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Green’s function Monte Carlo method with exact imaginary-time propagation
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We present a general formulation of the Green’s function Monte Carlo method in imaginary-time quantum
Monte Carlo which employs exact propagators. This algorithm has no time-step errors and is obtained by
minimal modifications of the time-independent Green’s function Monte Carlo method. We describe how the
method can be applied to the many-body Schro¨dinger equation, lattice Hamiltonians, and simple field theories.
Our modification of the Green’s function Monte Carlo algorithm is applied to the ground state of liquid4He.
We calculate the zero-temperature imaginary-time diffusion constant and relate that to the effective mass of a
mass-four ‘‘impurity’’ atom in liquid 4He.
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I. INTRODUCTION

The first effective quantum Monte Carlo method, t
Green’s function Monte Carlo~GFMC! method as develope
by Kalos @1,2#, can calculate the exact ground state of
many-body system. It has been applied to a wide clas
many-body problems that include many-boson syste
quantum lattice Hamiltonians, and simple field theories@3#.
It is generally applicable to many-body problems where
Green’s function is positive definite and can be used a
probability density that produces the random walks in
simulation.

Since Kalos’ original work, several alternative quantu
simulation methods have been developed. Here we will co
pare with one popular alternative, the imaginary-tim
Green’s function Monte Carlo method as developed
Anderson, Kalos, Ceperley, and others@4–6#. For calculating
response functions@8–12# it is convenient, but by no mean
necessary, to use the imaginary-time propagator, exp(2Ht),
whereH is the Hamiltonian andt is the imaginary time. The
imaginary-time GFMC is able to carry out ground sta
simulations that solve the time-dependent Schro¨dinger equa-
tion in imaginary time. The imaginary-time GFMC metho
has the advantage of being more intuitive but it is gener
implemented approximately. These approximations h
been addressed by many authors, but, while exact@13,14#
and nearly exact@15–19# variations have been develope
they have not enjoyed wide use because of their increa
complexity.

This paper presents an exact algorithm for imaginary-ti
propagation that is theoretically and computationally
simple extension of the Kalos time-independent GFM
method @2#. This algorithm retains the advantages of t
time-independent formulation in that it does not suffer t
ills of the approximate time evolution propagators, e.
time-step errors, node crossing, and singular behavior w
coulomb and other divergent potentials. This paper will foc
on the formal relationship between time-dependent and ti
independent exact propagators and the construction
implementation of our propagator.
1539-3755/2005/71~1!/016707~17!/$23.00 01670
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In Sec. II, we give an overview of Green’s function Mon
Carlo methods and then discuss the general formulation
circumvents approximations. We show how the ex
imaginary-time propagator can be implemented by a sli
modification of the method described by Kalos, Levesq
and Verlet~KLV ! @2# for the exact time-independent prop
gator. We show how the method can be applied to a lat
model in Sec. III and compare our implementation to qua
tum simulations of the spin-1

2 Heisenberg antiferromagne
@21#. In Sec. IV we formulate the exact imaginary-tim
method for a simple scalar field theory and relate it to
method of Carlson@22#. We describe a coordinate spac
implementation appropriate to the many-body Schro¨dinger
equation in Sec. V. Finally, in Sec. VI we use our method
calculate the zero-temperature imaginary-time diffusion c
stant of liquid helium and relate this to the effective mass
mass-four ‘‘impurity’’ atoms.

II. THE GREEN’S FUNCTION MONTE CARLO METHOD

Here we review the Green’s function Monte Car
method, first showing the formal relationships between
various propagators and then describing our implementat
We include in our discussion the class of Monte Carlo imp
mentations of iterative schemes to calculate the ground s
for a Hamiltonian, particularly time-dependent, imaginar
time, and pseudotime formulations.

A. Formal relationships among propagators

The Schro¨dinger equation in imaginary time is

Hc~ t !52
]c~ t !

]t
. ~1!

~Here, and in all equations that follow, we have assum
time units in which Planck’s constant\ is unity.! The ab-
sence of the usualA21 in Eq.~1! makes it a diffusion equa
tion in a many-dimensional space. In the diffusion analo
c is a time-dependent density that evolves in time as p
©2005 The American Physical Society7-1
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scribed by the imaginary-time Green’s function or propa
tor. The time evolution is governed by the imaginary-tim
propagator

G~ t !5exp@2~H2ET!t#, ~2!

whereET is a trial energy, eventually set to the calculat
ground state energy.

The imaginary-time Green’s function Monte Car
method numerically iterates the equation

c~ t1Dt !5e2(H2ET)Dtc~ t !, ~3!

to obtain c(t→`) which converges to the lowest energ
state contained inc(t50) ~normally the ground state!. For-
mally, convergence occurs because the amplitude of any
cited state component of energyE in the initial wave func-
tion is diminished by the factor

e2(E2ET)Dt ~4!

after each time stepDt.
Propagators other than Eq.~2! have been used to obtai

the ground state. For smallDt, the linear term in the expan
sion of the propagator in Eq.~2!,

12~H2ET!Dt, ~5!

can be employed. This propagator is only useful if the sp
trum of H is bounded above as well as below, i.e., for a fin
basis such as those encountered in finite lattice probl
@23–26#. To ensure the positive definite character of t
propagator, the off diagonal elements of the Hamilton
must be negative and one must chooseDt small enough so
that the second term in Eq.~5! is less than unity. As in Eq
~4!, application of this operator means that the amplitude
any excited state component of energyE in the initial wave
function is diminished by the factor 12(E2ET)Dt after
each time stepDt. This method is equivalent to the wel
known ‘‘power method’’ @27# used to find the larges
eigenvalue/eigenvector of a matrix. The constantET and the
factorDt serve to shift and scale the eigenvalue spectrum
that the ground state of the system has the largest magn
eigenvalue of Eq.~5!.

An operator which avoids the problem of the small tim
step needed by Eq.~5! is

1/@11~H2ET!Dt#. ~6!

This propagator and the propagator of Eq.~5! are equal to
the imaginary-time Green’s function to lowest order inDt.
The iteration of all three propagators will converge to t
true ground state, but only for the full imaginary-tim
Green’s function does the variable ‘‘t ’’ have the significance
of ~imaginary! time.

The KLV method@2# solves the time-independent Schr¨-
dinger equation

Hc5Ec, ~7!
01670
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and is also formally analogous to the power method. T
requires that a constantEC be added toH to make the eigen-
value spectrum positive definite. The largest eigenvalue
the Green’s function~the inverse of the shifted Hamiltonian!
is the inverse of the shifted ground state energy, and
power method applies. An eigenstate ofH of energyE then
satisfies the Green’s function equation,

1

EC1E
c5

1

EC1H
c[GKLVc. ~8!

The rightmost equality in this equation defines the KL
Green’s function.

FromGKLV one forms the KLV propagator equation to b
iteratively applied to an approximate ground state,

c5~EC1ET!GKLVc5
EC1ET

EC1H
c, ~9!

with a trial energyET adjusted to equal the true ground sta
energyE0. With each iteration, the amplitude of an excite
state component of energyE is diminishes by a factor (EC
1ET)/(EC1E).

One can compare the KLV propagator, Eq.~9!, and the
short-time approximation to the imaginary-time propagat
Eq. ~6!. The KLV propagator can be written as

EC1ET

EC1H
5@11~H2ET!Dt#21. ~10!

The equality determines the relationship between the c
stant energyEC and the ‘‘time step,’’EC1ET51/Dt.

The KLV propagator, Eq.~9!, can also be written in terms
of the full imaginary-time propagator, Eq.~2!, as

~EC1ET!GKLV5@11~H2ET!Dt#21

5
1

DtE0

`

dte2(H2ET)te2t/Dt. ~11!

The KLV method uses this equation to sample the pro
gator GKLV of Eq. ~8!. The right-hand side of Eq.~11! is
applied to a wave function and the integral over time is p
formed by sampling a time. The propagation of the sin
point is then carried out for that sampled time and, wh
repeated for many points, provides a correct statistical a
age of the integral over all times, i.e., the left-hand side
Eq. ~11!.

The above analysis then reduces to the simple statem
that when the KLV method makes a Monte Carlo move, it
made with the imaginary-time propagator for a time ra
domly sampled from exp(2t/Dt)/Dt. We have glossed ove
the details~see KLV @2# and Sec. V!, but this observation
points us to the minor modification of the KLV method r
quired to exactly sample the imaginary-time propagator.
need only enforce a specific time step in each propagatio
change the algorithm to provide an exact sampling of
imaginary-time propagator.
7-2
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B. Iterative equation for the imaginary-time propagator

For most problems, the exact imaginary-time propaga
is not known in an analytic form, but a procedure for exac
sampling it can be developed. An integral equation for
full imaginary-time Green’s function can be formed if
Green’s function G(U)(t) is known for a Hamiltonian
H (U)(t) @13,14#. (H (U) is often taken independent oft.! The
known Green’s function satisfies

~H (U)~ t !2ET!G(U)~ t !52
]G(U)~ t !

]t
, ~12!

and will be the starting point for sampling the exact Gree
function. While one usually choosesH (U) to be an approxi-
mation to the Hamiltonian in question and solves Eq.~12! for
G(U), in principle, one could chooseG(U) and use Eq.~12!
as definingH (U). An approach of this sort has been followe
by Ceperley@20#, producing a generalization of the KLV
algorithm.

The construction of the exact Green’s function beg
with the identity

e2(H2ET)t5G~ t !5G(U)~ t !2E
0

t

dt8
]

]t8
@G~ t2t8!G(U)~ t8!#,

~13!

where we have used the condition thatG(0)5G(U)(0)5I ,
the identity operator. Substituting the known time derivativ
from Eqs.~2! and ~12! into Eq. ~13! yields

G~ t !5G(U)~ t !1E
0

t

dt8G~ t2t8!@H (U)~ t8!2H#G(U)~ t8!.

~14!

This is the formal representation of the imaginary-tim
Green’s function which will be the basis of the procedu
we develop in the remainder of this paper. This equation
well known in real-time scattering theory@28# and was pre-
viously employed in a formulation of a generalize
imaginary-time diffusion Monte Carlo method@13,14#. It is
the exact implementation of the relation in imaginary-tim
GFMC with a fixed time step that is the substance of t
paper.

Variations of the above formalism have been implemen
for both time-independent@20# and time-dependent GFMC
@1,29#, but it can be made far more efficient when statisti
fluctuations in the simulation are reduced by importan
sampling. Importance sampling is a general technique
reducing statistical fluctuations@30#, described for quantum
simulation by KLV. Importance sampling and the technica
ties involved will be discussed in detail in the followin
section and Sec. V.

C. Importance sampling

Importance sampling utilizes an approximate form of t
ground state wave function to significantly improve the e
ciency of the Monte Carlo calculation. In liquid4He, for
01670
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example, we have a very good understanding of the two-
three-body correlations in the ground state@31–34#.

In this section we formulate importance sampling and
implementation of the exact imaginary-time algorithm on
problem with a finite basis. While a finite basis is usua
encountered in lattice problems, this representation in
way restricts the generality of what we will present. Secti
V contains the continuous space formulation.

In the finite basis, the matrix elements of the Hamiltoni
and Green’s functions are finite matrices,Hi j , Gi j (t), and
Gi j

(U)(t), and the wave function is a finite vector,c i(t). The
fundamental equations, Eqs.~3! and ~14!, become

Gi j ~ t !5Gi j
(U)~ t !1E

0

t

dt8(
kl

Gik~ t2t8!

3@Hkl
(U)~ t8!2Hkl#Gl j

(U)~ t8!, ~15!

cn~ t1Dt !5(
m

Gnm~Dt !cm~ t !. ~16!

Given some analytic approximate ground state wave fu
tion, with a real amplitude,cT(m), on themth basis state,
we use it to define a new set of propagators and densitie
the usual way by writing

c̃m~ t !5cT~m!cm~ t !,

H̃nm5
cT~n!Hnm

cT~m!
,

G̃nm
(U)~ t !5

cT~n!Gnm~ t !

cT~m!
,

G̃nm~ t !5
cT~n!Gnm~ t !

cT~m!
. ~17!

The importance sampled propagatorG̃ defines a new ran-
dom walk with a new density,c̃m(t)5cT(m)cm(t). Be-
cause the new density converges to the product of the
wave function and the exact wave function, it is nearly eq
to the true quantum probability density. This is only one
the advantages of importance sampling. Substituting th
definitions into our fundamental equations, Eqs.~15! and
~16!, shows that the importance sampled equations are s
ply given by writing a tilde over all quantities. These equ
tions,

G̃i j ~ t !5G̃i j
(U)~ t !1E

0

t

dt8(
kl

G̃ik~ t2t8!

3@H̃kl
(U)~ t8!2H̃kl#G̃l j

(U)~ t8!, ~18!

c̃n~ t1Dt !5(
m

G̃nm~Dt !c̃m~ t !, ~19!

are used in the numerical implementation in the followi
sections.
7-3
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Carrying out an iteration based on Eq.~19! is simple if we
suppose for a moment thatG̃nm is known. Initially ~and at
every iteration of the calculation! one has an ensemble o
points called ‘‘walkers’’ distributed over the basis states w
a probability proportional toc̃m . Each walker is moved from
a statem to a staten with a probability proportional toG̃nm .
While G̃nm is positive definite by construction, it is not no
malized in the sense that summing over all possible fi
positions does not necessarily yield unity,

0<(
n

G̃nm[” 1. ~20!

As a result, unlike classical Monte Carlo, the number
walkers in the ensemble may change during the iteration

For a walker moving from a statem, if the sum in Eq.~20!
is less than unity, then the sum is the probability that
walker will not be eliminated from the simulation. If the su
is greater than one, the algorithm must produce, on an a
age, more than one walker. The exact number of resul
walkers at the new positions may vary from one iteration
the next, but must, on average, equal the magnitude of
sum in Eq.~20!. Only after many iterations, when the e
semble representingc̃(t) for large t has converged andET
has been adjusted to be the ground state energy, will the
number of walkers in the ensemble be constant on the a
age.

Improvement in the efficiency of the calculation with im
portance sampling results from an enormous decrease in
tistical fluctuations of the number of walkers or in the de
sity representing the ground state accompanied by a l
decrease in the statistical fluctuations of expectation val
In practice, the calculation may be quite close to the id
case where there are no population fluctuations. The a
rithm is designed to make use of the information in the i
portance function and we therefore begin by considering
case of perfect importance sampling, when the exact gro
state is used as the trial wave function.

1. Ideal importance sampling

With perfect importance sampling one would havecT
5c0 and ET5E0 where c0 and E0 are the exact ground
state wave function and energy. While, we do not know th
quantities, we design the algorithm so that there are no po
lation fluctuations in this limit.

In the process iterating Eq.~16!, the GFMC repeatedly
moves an ensemble consisting of a list of walkers~coordi-
nates! that are sampled fromc̃(t) to new positions sampled
from c̃(t1Dt). The expected number of walkers resultin
from an initial walker at statem is given by the sum in Eq
~20! which, with cT replaced byc0 in Eq. ~17!, becomes
unity,

(
n

G̃nm~ t !5(
n

c0~n!Gnm~ t !

c0~m!
51. ~21!
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This follows from the definition ofG̃, the hermiticity of
Gnm , and the fact that the time-independentc0 satisfies Eq.
~16!. Unit normalization means each input walker will pro
duce exactly one output walker when perfect importan
sampling is used.

To sampleG̃i j (t), we mean that we have a walker at si
j and we wish to select a sitei from all possible final sites so
that the probability of selecting a particulari is proportional
to G̃i j (t). We use Eq.~13! to expandG̃(t) in terms of the
known G̃(U),

G̃i j ~ t !5G̃i j
(U)~ t !1E

0

t

dt8S 2
]

]t8
F(

k
G̃ik~ t2t8!G̃k j

(U)~ t8!G D .

~22!

The unit normalization of perfect importance sampli
from Eq.~21! tells us that for any sitej, the two terms on the
right of Eq. ~22! have normalizations that add to unity. W
may thus sample the sitei from either term if we first selec
that term with a probability proportional to its norm. Th
probability of selecting the first term is( i G̃i j

(U)(t), and the
probability of selecting the second term is just one min
this.

If the first term is chosen to be sampled, then a sitei is
sampled fromG̃i j

(U)(t) and the process of moving one walk
one time stept has been completed. If the second term
selected, then we proceed by recognizing that the integr
is positive definite and can be normalized to form a jo
probability distribution for the variablesi and t8P@0,t#.
Since it is a joint probability distribution function in two
variables, we can write it as the product of a marginal pro
ability distribution function fort8 and the conditional prob-
ability distribution function fori, given t8. We shall con-
struct these probability distributions explicitly in th
following section.

The probability of sampling the second term in Eq.~22! is
also the sum over final states,i. The expected number o
walkers, using perfect importance sampling, produced by
second term for a value oft8 in an intervaldt8 is

dt8S 2
]

]t8
(

k
G̃k j

(U)~ t8!D , ~23!

since the sum overi in the second term of Eq.~22! eliminates
the G̃ by using Eq.~21!.

If we sample a timet8 from the probability distribution of
Eq. ~23! over the interval 0,t8,`, the probability thatt is
shorter thant8 is just the probability of picking the first term
The probability thatt is longer thant8 is the probability of
picking the second term. In other words, we may choose
have the walker on sitej make a time stept to a site i
selected from the first term or the second term of Eq.~21!
depending on whether a timet8 sampled from Eq.~23! is
shorter or longer than the time stept.

This structure has a simple physical interpretation. T
time t is the time the walker must propagate to finish the tim
step. We sample a timet8 which is the time for the walker to
7-4
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‘‘scatter’’ corresponding to the difference betweenG̃ and
G̃(U). If the time to finish the time step is smaller, then t
walker does not scatter and the walk is completed by s
pling from G̃(U). If, however, the timet8 is smallest, then the
scattering takes place before the walker completes its t
step. The second term must then be sampled. For thi
work we require that Eq.~23! defines a normalized probabi
ity density on 0,t8,`, i.e.,

G(U)~ t8→`!50. ~24!

For a time-independentH (U), this means that the groun
state energy ofH (U) is higher thanET . Once a term is se
lected, we sample the states of the walkers with probab
again given by the expected contribution of that state to
number of walkers. We note that the asymptotic requirem
in Eq. ~24! is just a matter of convenience to simplify th
sampling process because the valueG̃(U)(t8) for t8.t is
never actually needed.

2. Nonideal importance sampling

In actual implementations, one must deal with a trial wa
function that approximates the ground state. Having chos
trial function, the random walk and resulting density a
given by exactly implementing Eq.~18!. Minimizing the
variance, for a given trial function, means minimizing t
fluctuations in the population of walkers and this charac
izes the optimal random walk algorithm.

We will describe two implementations of the finite tim
step algorithm, both of which are exact in the sense that t
sample the exact Green’s function correctly on the avera
We will compare these methods to related implementati
of the imaginary-time and time-independent algorithms, a
discuss why one or the other may be considered more ne
th
q
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f

m
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‘‘optimal’’ for nonideal importance sampling.
We wish to sample a new locationi for a walker atj from

G̃i j (t) using Eq.~22!, or equivalently Eq.~16!. We assume

that we have constructed the time independentcT andH̃ (U),

and are able to sample a positioni from G̃i j
(U)(t8) for any

time t8<t. These assumptions are common to both al
rithms.

With nonideal importance sampling, we lose the unit n

malization ofG̃i j (t) that was the basis of Eq.~21! and the
sampling method described in Sec. II C 1. This is comp
sated for by weighted sampling techniques~described below!
which produce an average number of walkers equal to
correct normalization.

The two algorithms we will consider differ primarily in
the manner in which a new positioni is to be sampled from

G̃i j
(U) or the correction term in Eq.~16!. The first algorithm

adopts the approach that, for a good importance function,
relative weights of these two choices should be appro
mately given by the same condition of whethert8 sampled
from Eq.~23! is less than or greater thant. Since this method

of selecting the first or second term in theG̃i j (t) equation is
not exact, we must assign compensating weights to e
term so that the expected number of walkers sampled for
site i starting fromj is on the average correct, i.e., equal

the value ofG̃i j (t).
The weighted sampling techniques that we employ

elucidated in texts on probability theory@30#. We will pro-
vide here only the importance sampled equation and the
gorithm to sample the position of the walker that is prop
gated at timet.

To describe the first algorithm, we write the importan
sampled Green’s function equation as
G̃i j ~ t !5F G̃i j
(U)~ t !

(
n

G̃n j
(U)~ t !G

2

F(
n

G̃n j
(U)~ t !G

1

1E
0

t

(
kl

@G̃ik~ t2t8!#7F (
mn

@H̃mn
(U)~ t8!2H̃mn#G̃n j

(U)~ t8!

(
mn

@H̃mn
(U)~ t8!2ETdmn#G̃n j

(U)~ t8!
G

6

3F H̃kl
(U)~ t8!2H̃kl

(
m

@H̃ml
(U)~ t8!2H̃ml#

G
5

F (
m

@H̃ml
(U)~ t8!2H̃ml#G̃l j

(U)~ t8!

(
mn

@H̃mn
(U)~ t8!2H̃mn#G̃mn

(U)~ t8!
G

4

F2
]

]t8
(

n
G̃n j

(U)~ t8!dt8G
3

, ~25!
q.

-

where the subscripts on the brackets are simply labels
we can refer to in the text. The first thing to note is that E
~25! is identical to Eq.~22!. Term 1 cancels the denominato
of term 2. Term 3 cancels the denominator of term 6, wh
we use Eq.~12!. The Hamiltonian part of the numerator o
term 4 cancels with the denominator of term 5. The deno
nator of term 4 cancels with the numerator of term 6. T
leaves the numerator of term 2 for the first term, and term
at
.

e

i-
s
7

along with the numerator of term 6 and theG̃(U) in the nu-
merator of term 4.

The algorithm to sample a new walker position from E
~25! is the following.

~1! For each walker at positionj, which needs to be propa
gated, the time left to propagate ist. ~Initially, t is the full
time step.!

~2! Sample a timet8 (0,t8,`) from the probability
7-5
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distribution of term 3. The probability that the timet8 is
greater thant is term 1; if the sampledt8.t, then sample a
new state i from the normalized probability distribution
given by term 2. The walker has now walked for a timet,
and the weight is one. This walker has finished its walk a
been propagated a full time step.

~3! If the time in step 2 is less thant, then we have
sampled a timet8 from term 3. We now sample the interme
diate statel from the normalized probability distribution o
term 4, using the timet8 already sampled, to evaluat
G̃(U)(t8).

~4! Oncel is sampled, the intermediate statek is sampled
from term 5. The walker is now in statek, and we have taken
care of all but terms 6 and 7. Term 6 is taken to be the we
of the walker. If perfect importance sampling is used, t
weight is one since in that case the local energy defined

En
local5(

m
H̃mn ~26!

is equal to the ground state energyE0. However, with
realistic importance functions, this term will not be iden
cally one. This weight can be included as a branchi
io

ro

th
te

i
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absorption factor, or it can be carried along with the walk
~5! Only term 7 is left. This is the full Green’s function fo

walking fromk to some statei in time t2t8. To sample term
7, we simply reset the time leftt→t2t8 and repeat these
steps. Eventually, the sampled timet8 in step 2 will be
greater than the time left and the walk terminates.

The above algorithm produces exactly one output wal
when perfect importance sampling is used. Otherwise,
weight, term 6, compensates for the assumptions made w
sampling the terms so that the exact equation is reprodu
even when the importance sampling is not perfect.

Many other algorithms that sample exactly like this one
the perfect importance sampling limit will sample different
when the importance sampling is not perfect. Our seco
algorithm is an example of such a modification which i
cludes a term exp@(Ej

local2ET)t# in the time sampling. With
perfect importance sampling,Ej

local5ET5E0 being indepen-
dent of j, nothing is changed in that limit. In the nonide
case, the sampling process must include the appropriate c
pensating weights so that the algorithm remains exact.
Green’s function equation can be written in the same way
before:
G̃i j ~ t !5@e2(Ei
local

2ET)t#3F G̃i j
(U)~ t !exp@~Ei

local2ET!t#

(
n

G̃n j
(U)~ t !exp@~En

local2ET!t#G
2

F(
n

G̃n j
(U)~ t !e(En

local
2ET)tG

1

1E
0

t

dt8(
kl

@G̃ik~ t2t8!#8@e2(El
local

2ET)t8#7F H̃kl
(U)~ t8!2H̃kl

(
m

@H̃ml
(U)~ t8!2H̃ml#

G
6

3F (
m

@H̃ml
(U)~ t8!2H̃ml#G̃l j

(U)~ t8!exp@~El
local2ET!t#

(
mn

@H̃mn
(U)~ t8!2H̃mn#G̃n j

(U)~ t8!exp@~En
local2ET!t#

G
5

F2
]

]t8
(

n
G̃n j

(U)~ t8!e(En
local

2ET)t8G
4

. ~27!
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The additional factors again cancel, leaving this equat
analytically identical to Eq.~22!.

For this second algorithm, the timet8 is sampled from the
probability density in term 4. We require term 4 to go to ze
as t8→`, i.e., the ground state energy ofGn j

U (t8) must be
larger thanEn

local2ET for all n. If t8 is greater thant, statei
is sampled from term 2, and the walk is terminated with
walker of weight given by term 3. Ift8 is less thant, statesl
andk are sampled from terms 5 and 6 respectively, and
walk continues with a walker that needs to be propaga
from k to somei with weight given by term 7.

The advantage of this formalism is that the weight term
always proportional to exp@2(Ei

local2ET)t# where t is the

time for i sampled fromG̃i j
(U) either in the term 5 or in the
n

a

e
d

s

term 2. In the limit that the time step goes to zero, this is
Feynman-Kac formula@35#. In both algorithms, large fluc-
tuations inElocal will give a large variance. Since the algo
rithms are based on the assumption that a good importa
function is available, both formalisms can suffer large va
ances if the trial function is poor.

In practice, we should select the algorithm that gives
lowest variance for a given amount of computer time. E
actly sampling terms 5 and 6 of Eq.~27! can be difficult;
often approximations to these terms are used and the rat
the correct term to the approximation is included in t
weight. These approximations will increase the variance
the results even in the perfect importance sampling lim
They will not change the exact character of the algorithm
7-6
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III. A LATTICE HAMILTONIAN EXAMPLE

The spin-12 quantum antiferromagnet ground state h
been solved using Monte Carlo methods by several gro
@21,36,12#. We will add nothing to their results, however, th
Hamiltonian is simple enough so that we can solve
imaginary-time equations easily. We will then relate this s
lution to the method using Eq.~5!.

Carlson@21# and others@36# exploited the fact that the
Hamiltonian can be written in terms of boson variables a
the basis set can be chosen, for a square lattice, so tha
ground state is positive. The standard spin Hamiltonian i

H52J(̂
i j &

SiSj , ~28!

where the sumŝi j & are over nearest neighbor states andS is
the spin vector of the spin-1

2 particles at each site. This i
transformed@21# to a boson system on a two-dimension
lattice,

H52
J

2 (̂
i j &

~bi
†bj1bj

†bi !1J(̂
i j &

ninj . ~29!

This Hamiltonian describes hard-core bosons on a sq
lattice. The energy is the energy above the classical per
antiferromagnet ground state energy. Boson operatorsbi

†

(bi) create~destroy! a boson at sitei. The bosons have a
hard-core interaction because the number operatorsni , gen-
erated by the transformation, only take on the values 0,1,
no double occupancy. The basis states are chosen to be
which have totalSz zero, since only these states are imp
tant in the ground state of the antiferromagnet. This co
sponds to a half filled lattice of bosons. Different fillings
bosons correspond to differentSz .

We begin by constructing the trial wave function and im
portance sampled matrices needed for the first of our Gre
function algorithms, Eq.~25!. Several choices are availab
that were used in earlier simulations@21,26,36# but for the
algorithm discussion we need not make a specific choice
trial wave function.

The simplest choice forG(U) is to takeH (U) to be the
diagonal part of H. Then, Hi j

(U)5H j j d i j , and Gi j
(U)(t)

5exp@2(Hjj2ET)t#dij . Since the true ground state energy
known to be negative, andH j j is positive, thenGi j

(U)(t) is a
decaying exponential and can be normalized and used
probability distribution in time.~For other fillings, where the
exponential may not be negative, a time could be samp
from a decaying exponential and appropriate weighting f
tors included.!

SinceG(U) is diagonal we can simplify Eq.~25! and the
algorithm for implementing it. A diagonalH (U) meansH̃ i j

(U)

5Hi j
(U) and G̃i j

(U)5Gi j
(U) . This makes term 4 and term 2 i

Eq. ~25! simply d l j . We can rewrite Eq.~25! with these
simplifications as
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G̃i j ~ t !5d i j @exp$2~H j j 2ET!t%#11E
0

t

dt8(
k

@G̃ik~ t2t8!#7

3FH j j 2Ej
local

H j j 2ET
G

6F 2H̃k j~12dk j!

(
m

~2H̃m j!~12dm j!
G

5

3@~H j j 2ET!exp$2~H j j 2ET!t8%#3 . ~30!

We have retained the labels of the terms to match thos
Eq. ~25!. The absence of term 4 means that step 3 in
algorithm for Eq.~25! is omitted, i.e.,l is set equal toj.

We may restate the algorithm as it applies to t
above equation and the problem at hand. Sample a t
to hop, t8, from the normalized probability distribution
(H j j 2ET)exp@2(Hjj2ET)t8#. If t8.t, then the walker has
finished and remains at sitej. Otherwise, sample a boson ho
from site j to a sitek according to the relative value of th
importance function at the hopped position, i.e., samplk
from the probability distribution function of term 5. Th
walker at site k is assigned a weight of term 6, (H j j

2Ej
local)/(H j j 2ET). As mentioned before, the weight can b

kept or included in a branching/absorption process. Fina
subtractt8 from the time left for the walker to complete th
time step, and repeat the process until the walk terminat

This resulting algorithm can be related to that of Trive
and Ceperley@36# with only minor modifications. They used
the propagator of Eq.~5!. As the system size becomes larg
the largest eigenvalue also gets large. To keep the propag
positive, the ‘‘time step’’ in Eq.~5! must get small. In this
case, the straightforward algorithm to sample Eq.~5! be-
comes inefficient. The straightforward algorithm simp
samples the move for a walker from statej to i by sampling
i from the relative value ofd i j 2(H̃ i j 2ETd i j )Dt. As Dt be-
comes small, almost all of the steps will be sampled from
diagonal term. Trivedi and Ceperley therefore modified
algorithm so that they sampled the number of steps until
walker hops. If we take the limit of their time step,Dt→0,
replace the number of stepsn by the corresponding time
nDt, and propagate all the walkers to the same timet, we
recover our algorithm above.

One advantage of our formalism is that it is easy to s
how to expandG in terms of another Green’s functionG(U).
For example, solving the spin-1

2 quantum antiferromagnet fo
high values ofSz corresponds to a low density of bosons.
the bosons are well separated, aG(U) given by solving for
the propagation of each boson in a domain around its cur
position would be more efficient. The method would then
very much similar to that given in Sec. V for the man
particle Schro¨dinger equation. The simple diagonalG(U) can,
of course, be viewed as a domain Green’s function~see Sec.
V! with the domain consisting of a single site. Extending t
domain of G(U) should yield a more computationally effi
cient simulation.

IV. A SIMPLE FIELD THEORY

Scalar field theories can be solved using these GF
methods. Here we show how the method developed by C
7-7
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son and used by Carlson and Schmidt@22# to solve the po-
laron and other scalar field theories can be cast in the e
imaginary-time GFMC form. The method is quite similar
that used for the lattice Hamiltonian. The main difference
that the degrees of freedom are continuous. We will prese
lattice formulation in momentum space. The continuous f
mulation @22# is obtained in the usual way by replacing th
sums over momenta by integrals.

The Hamiltonian for the scalar field theory is

H5(
kW

v f~k!a†~kW !a~kW !1(
kW

vb~k!b†~kW !b~kW !2(
kW ,qW

b~q!

3@a†~kW2qW !a~kW !b†~qW !1a†~kW !a~kW2qW !b~qW !#, ~31!

wherea(kW ) @a†(kW )# is the fermion destruction~creation! op-
erator andb(kW ) @b†(kW )# is the boson destruction~creation!
operator for momentumkW . The corresponding free particl
energies arev f(k) andvb(k) and the interaction, which ca
create or destroy bosons of momentumqW , has a strength
given byb(q). This interaction term corresponds to the ho
ping term in the lattice model, and to the kinetic energy
the real-space Schro¨dinger Hamiltonian. Carlson an
Schmidt discuss several different forms for the free part
spectrums,v f(k) andvb(k), and the interactionb(q) with
applications to a polaron model and a model with a nucle
and scalar mesons. We will leave the particular choices
these quantities unspecified and refer the interested read
the original work@22# for specific results.

A basis stateuKW n&[ukW1 ,kW2 , . . . ,kWn ,kW f& will specify the
number of bosons,n, and the momenta of each boson,kW i ,
and the fermion,kW f . Carlson and Schmidt chose the tri
wave function for one fermion and total momentumQW to be

uCT&5P~QW !(
kW f

g~kf !a
†~kW f !expF(

kW
f ~k!b†~kW !G u0&,

~32!

whereP(QW ) projects the state onto total momentumQW . They
describe the variational Monte Carlo procedure used to o
mize a trial wave function using standard methods to sam
the density

uCT~KW n!u25g2~kf !)
i 51

n

f 2~ki !/n!. ~33!

To match the algorithm described in Ref.@22#, we use our
second algorithm described by Eq.~27!. H (U) must first be
chosen. The simplest choice, following Carlson, is similar
the simplest lattice choice. We takeH (U) to be diagonal ink
space and boson number,

H (U)5(
kW

v f~k!a†~kW !a~kW !1(
kW

vb~k!b†~kW !b~kW !.

~34!
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The algorithm described by Eq.~27! requires the local
energy, Eq.~26!, Ej

local5(mH̃m j . The indexj now refers to a
particular basis state which we denoted above asuKn& and
the sum is over all other basis states of the same total
mentum. We can separateEj

local into three parts:

Ej
diag5v f~kf !1(

i
vb~ki !,

Ej
crea5

(
qW

^CT~KW n11!ub~q!b†~qW !a†~kW2qW !a~kW !uCT~KW n!&

^CT~KW n!uCT~KW n!&
,

Ej
dest5

(
i

^CT~KW n21!ub~q!b~qW !a†~kW1qW !a~kW !uCT~KW n!&

^CT~KW n!uCT~KW n!&
.

~35!

The first component ofElocal is the energy of the diagona
HamiltonianH (U) for the particular walker and is simply th
sum over boson and fermion single particle energies. T
creation energy term,Ecrea, requires the sum~integral! over
all possible values of the created boson’s momentum.
matrix element conserves momentum, so the vectorKW n11
has the same boson momenta of then-boson state and on
additional boson of momentumq which is subtracted from
the fermion momentum. When making a move to a state w
one fewer boson, the sum inEdest covers the momentum
values of then possible destroyed bosons.~Note that both
destruction and creation energies are negative.! This can be
generalized to include more than one fermion@22#.

We will now construct the propagation equation based
our second algorithm, Eq.~27!, and show that it is a fixed
time-step version of the algorithm use in Ref.@22#. The par-
ticular choice forH (U), Eq. ~34!, meansG(U) is diagonal in
the basis set chosen. SubstitutingG̃i j

(U)5d i j Gj j
(U) allows the

simplification, which we need, of Eq.~27!,

G̃i j ~ t !5@exp~2~Ej
local2ET!t !#3@d i j #2@Gj j

(U)~ t !

3exp~~Ej
local2ET!t !#11E

0

t

(
k

@G̃ik~ t2t8!#8

3@exp$2~Ej
local2ET!t8%#7

3F Hk j
(U)~ t8!2H̃k j

(
m

~Hm j
(U)~ t8!2H̃m j!

G
6

3F2
]

]t8
$Gj j

(U)~ t8!exp@~Ej
local2ET!t8#%dt8G

4

.

~36!

We have retained the structure of the propagation equat
Eq. ~12!, and the labeling of each of the terms, so that we c
refer to the steps in the general sampling procedure. Ter
7-8
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equaledd l j and was removed with the sum overl. We have
dropped the unnecessary tilde from the diagonalH (U).

Implementing the walk proceeds as before. For a wal
at an initial locationj, we evaluate the three components
Ej

local using Eq.~35!. We must sample a time from term
above. BecauseGj j

(U) contains the diagonal energyEj
diag , the

time t8 is simply sampled from the normalized exponenti

pj~ t !5
exp@~Ej

crea1Ej
dest!t#

2~Ej
crea1Ej

dest!
. ~37!

If the time sampled is greater than the specified time stet,
no ‘‘scattering’’ has occurred, so sett85t and sample the
first term which means stay in the same place and comp
the walk by assigning a weight equal to term 3. Ift8 is less
than t, then sample a new locationk from the normalized
distribution of term 6. The new ‘‘location’’k means a state
with either one more or one less boson since the numer
of term 6 contains only the off diagonal part of the Ham
tonian and it connects only states with a different numbe
bosons. We cana priori decide whether to create or destro
a boson by selecting the option with the relative weight
the two corresponding contributions in term 6. Then, eithe
creation or a destruction move must be made with the pr
abilities

Pj
crea5

Ej
crea

Ej
crea1Ej

dest
,

Pj
dest5

Ej
dest

Ej
crea1Ej

dest
. ~38!

If a destruction move is chosen, then one of then bosons
is deleted and its momentum transferred to the fermion.
selection of the boson is done with a probability proportio
to the matrix elementHk j

(U)(t8)2H̃k j . Alternatively, this is
equal to sampling one of then terms inEj

destgiven in the sum
in Eq. ~35! with a probability equal to the value of the ter
divided byEj

dest. If a creation move is selected, exactly th
same procedure is followed of sampling a term from the s
in Ej

crea in Eq. ~35! except that now there are an infini
number of such possible final states. There are a numbe
techniques available for sampling from such a distribut
@30#. Finally, the new locationk has been selected and it
assigned a weight exp@2(Ej

local2ET)# and the walk contin-
ues with a new timet2t8 as before.

The algorithm implemented by Carlson and Schmidt d
fers from ours in that they always moved the walker at e
step. They accomplish this by sampling the time unti
creation/destruction move is made using the probability d
tribution of term 4, i.e., Eq.~37!. This, in our language, ef
fectively setst5`, so term 2 is never sampled. We use t
term ‘‘effectively’’ because this is not a rigorous analogy.
their implementation, the simulation was divided into seve
large time intervals and when a walker had passed one o
interval boundaries, its propagation was suspended unti
other walkers had passed the same boundary. These inte
01670
r
f

,

te

or

f

f
a
b-

e
l

of
n

-
h

-

l
he
ll
als

have, in a practical sense, the same effect as making the
steps in the exact-time algorithm equal to the large time
terval.

V. THE MANY-BODY SCHRÖ DINGER EQUATION

In this section we will discuss in some detail the exa
imaginary-time method for a system ofN equal mass boson
in three-dimensional space interacting with central pairw
potentials. We are adopting units where\2/2m and \ are
unity. We shall ultimately apply this method to the groun
state of liquid helium, but generalization to unequal mas
and more general potentials is straight forward. General
tion to fermions is problematic@7#.

The many-body Hamiltonian we are considering is simp

H52¹21V~R!, ~39!

whereR5(rW1 ,rW2 , . . . ,rWN) is the 3N dimensional vector of
N particles with positionsrW i and¹2 is the sum of laplacians
with respect to the individual particle coordinates,(¹ i

2 .
While real-space GFMC is applicable to a wide class

problems, it carries with it a few technical aspects that
not arise in the theoretical formulations of the lattice a
field theory problems of Secs. III and IV. In particular, w
must deal with infinitely repulsive potentials and addition
sampling approximations that are related to issues of e
ciency but which retain the exact character of the meth
We will not discuss the issues of the attractive coulomb
tential or nodal surfaces of wave functions because the u
methods that have been applied@14,37# can be carried over
directly to the exact imaginary-time formulation.

A. Coordinate space algorithm

In Sec. II A, Eq.~11!, we showed that the KLV Green’s
function for the time-independent Schro¨dinger equation was
formally related to the time integral of the imaginary-tim
propagator. Although not explicitly formulated this way, th
KLV algorithm can be understood as sampling a time s
from the exponential probability distribution function of Eq
~11!,

p~ t !5
1

Dt
e2t/Dt, ~40!

to select the time step for the Monte Carlo move. Thus,
modification merely changes the randomly chosen time s
to a prescribed time step. We proceed by following the ba
ideas of the Kalos, Levesque, Verlet algorithm@2# and note
where differences exist.

The imaginary-time Green’s function, Eq.~2!, in a real-
space basis, is the solution to the 3N coupled differential
equations,

@2¹21V~R!2ET#G~R,R8,t !52
]G~R,R8,t !

]t
. ~41!
7-9
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We will employ our first algorithm, Eq.~25! of Sec. II B, to
express this exact Green’s function as a known Green’s fu
tion plus a correction term.

The simplest approach takes a HamiltonianH (U) with a
constant potentialU if the constant potential can be chos
to be an upper bound forV(R). In helium and many othe
systems,V(R) is often not bounded above. To circumve
this problem, as well as to make the method more efficien
the general case, the domain ofH (U) is restricted. Equiva-
lently, outside a finite domainD the potential inH (U) is taken
to be infinite.

The Green’s function for a constant potentialU in the
domainD is

G(U)~R,R8,t !5^Rue2(H(U)2ET)tuR8&, R,R8eD, ~42!

and satisfies

~H (U)2ET!G(U)~R,R8,t !5~2¹21U2ET!G(U)~R,R8,t !

52
]G(U)~R,R8,t !

]t
, ~43!

with the conditionG(U)50 for R or R8 outside the domainD
andG(U)(R,R8,0)5d(R2R8).

BecauseG(U) is defined on a finite domain, the derivatio
of the real-space propagator equation, equivalent to Eq.~14!,
is modified by the addition of a surface term. We begin w
Eq. ~13!, in coordinate space,

^Rue2(H2ET)tuR8&5G~R,R8,t !

5G(U)~R,R8,t !2E
D

dR9E
0

t

dt8
]

]t8

3@G~R,R9,t2t8!G(U)~R9,R8,t8!#.

~44!

Carrying out the time derivatives to getH andH (U) as in Eq.
~14!, yields

G~R,R8,t !5G(U)~R,R8,t !1E
0

t

dt8E
D

dR9G~R,R9,t2t8!

3H (U)~R9!G(U)~R9,R8,t8!

2G(U)~R9,R8,t8!H~R9!G~R,R9,t2t8!,

~45!

where the argumentR9 for H(R9) and H (U)(R9) identifies
the coordinates for¹2 andV(R9).

Applying Green’s theorem toG¹2G(U)2G(U)¹2G yields
the fundamental equation of the coordinate space algorit
giving the Green’s functionG, in a form that can be iterated
as
01670
c-

in

,

G~R,R8,t !5G(U)~R,R8,t !1E
0

t

dt8E
D

dR9G~R,R9,t2t8!

3@U2V~R9!#G(U)~R9,R8,t8!

1E
0

t

dt8E
]D

dS9G~R,R9,t2t8!

3@2n̂9•¹W 9G(U)~R9,R8,t8!#. ~46!

The last term on the right-hand side is integrated o
the bounding surface,]D, of the domain ofG(U) and
the second term is integrated over the domain. The te

@2n̂9•¹W 9G(U)(R9,R8,t8)# is minus the normal derivative a
the surface. This new surface term is a feature that can
naturally fit into the diffusion interpretation of the simula
tion.

Both the boundU and the domainD are chosen differ-
ently for each value ofR8. The only restriction on the do
mains is that it must eventually be possible to propag
from any valid part of configuration space to any other. T
value of U(R8) is selected to be an upper bound toV(R9)
for R9 inside the domain so that all terms in Eq.~46! are
positive.

Having constructed the coordinate space integral equa
for G(R,R8,t), we can write down the importance sample
coordinate space equation forG̃ and the integral equation to
be iterated to obtain the importance sampled densityc̃
5cTc corresponding to Eqs.~18! and~19! in Sec. II C. Fol-
lowing the definitions of Eq.~17!, Eq. ~46! becomes

G̃~R,R8,t ![
cT~R!

cT~R8!
G~R,R8,t !5

cT~R!

cT~R8!
G(U)~R,R8,t !

1E
D

dR9E
0

t

dt8
cT~R!

cT~R9!
G~R,R9,t2t8!

3@U2V~R9!#
cT~R9!

cT~R8!
G(U)~R9,R8,t8!

1E
S
dR9E

0

t

dt8
cT~R!

cT~R9!
G~R,R9,t2t8!

3
cT~R9!

cT~R8!
@2n̂9•¹W 9G(U)~R9,R8,t8!# ~47!

and

c̃~R,t1Dt !5E dR8G̃~R,R8,Dt !c̃~R8,t !. ~48!

Unlike our general case, Eq.~18!, Eq. ~47! with impor-
tance sampling cannot be transcribed from the original fo
Eq. ~46!, by simply placing tildes over each function. Th
gradient at the surface prevents this elegance.
7-10
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B. Ideal sampling in coordinate space

Sampling the Green’s function equation, Eq.~47!, pro-
ceeds along the lines described for the lattice and field the
examples. The task is more complicated because of the
face term and becauseG(U)(R,R8,t) is not diagonal in the
coordinate space basis. As a consequence, the samplin
both the time and positions from the importance samp
functions will have to be done in a nonoptimal fashion. O
substitute procedure will remain exact because the samp
will include compensating weighting factors. Further, w
will argue that the increase in variance will be relative
small and acceptable. The main source of variance will
the approximate nature of the trial wave function.

As before, we will develop a procedure for samplin
which introduces as little variance as possible and thus i
near zero variance as possible when the importance func
approaches the exact ground state. It is thus useful to w
down this ideal case and integrate Eq.~47! assumingcT
5c0. Then

E dRG̃~R,R8,t !51 ~49!

on the left side of Eq.~47! and inside both integrals of th
right side. This leaves the identity,

15E dRG̃(U)~R,R8,t !

1E
0

t

dt8F E
D

dR9@U2V~R9!#
cT~R9!

cT~R8!
G(U)~R9,R8,t8!

1E
S
dR9

cT~R9!

cT~R8!
@2n̂9•¹W 9G(U)~R9,R8,t8!#G . ~50!

From the above equation, we can read off the procedur
be used for exact importance sampling, in analogy to
~22!. The term in large brackets is a normalized probabi
distribution in thet8 variable. As before~e.g., Sec. II C 1! we
would samplet8 from this distribution and ift8.t then the
G̃(U)(R,R8,t) term is to be sampled for a new locationR of
the walker and the walk terminates. Ift8,t, then we must
choose a time sampled from the distribution of times
moves to the surface and the distribution of times for inter
~volume! moves with a probability proportional to the tw
integrals overR9. Finally, having selected the surface or vo
ume time, the locationR9 is to be sampled from the corre
sponding integrand scaled by its normalization. ThisR9 is
assigned a new timet2t8 to complete the time step and th
sampling ofG̃(R,R9,t2t8) is done to continue the walk.

The above description is ideal and, with a realistic imp
tance function, we must carry out these steps in a way
includes weights. There will be some additional populat
fluctuation resulting from the fact that we include weigh
that are not unity. Our first step in implementing a nonid
algorithm is constructing the domain Green’s functionG(U).
We can then sample a time from this function and the po
tions R9 on either the interior or the surface of the doma
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These sampling procedures do not include the importa
function or theU2V(R9) factor, so we will modify the sam-
pling procedures in an approximate fashion and construct
appropriate weighting factors to make the algorithm exac

1. Constructing G„U…

„t…

Before we can develop a sampling procedure for the v
ous terms in Eq.~47!, it is necessary to construct the doma
Green’s functionG(U). KLV arrived at the time-independen
form by first solving for the time dependentG(U) which we
seek. A hyperspherical domain in 3N dimensions was u
by Kalos in his early investigations@1,38# of few-body prob-
lems. An improved Green’s function, suited to many-bo
systems, was developed by Kalos, Levesque, and Verlet@2#.
The domainD is a set of nonoverlapping spheres, cente
about each particle. The radius of each sphere and the u
boundU are adjusted at every step of the walk. As long
the bound is rigorous and the spheres nonoverlapping,
choice for domain size andU is legal, but very large domain
usually result in large values of the boundU which limits the
distance walkers move in a single step. The optimization
these is easily done by trial and error, so we will omit furth
discussion.

Since the spheres in the domainD are nonoverlapping,
G(U) can be factored into a product ofN one-body functions,

G(U)~R,R8;t !5^Ruexp@2~H (U)2ET!t#uR8&

5exp~2~U2ET!t !)
i 51

N
1

ai
3

gS urW i2rW i8u
ai

,
t

ai
2D .

~51!

The sphere radius for thei th particle isai , andrW i andrW i8 are
the three-dimensional positions of particlei. The analytic
forms of theg(r,t) are well known from classical diffusion
theory. They describe the time evolution from a unit po
source at the center of a unit sphere with a unit diffus
constant, as it diffuses toward the perfectly absorbing bou
ary of the surface of the sphere. The functiong, as defined by
the above equation, satisfies

2¹r
2g~r,t !52

]g~r,t !

]t
~0,r,1! ~52!

with the boundary conditionsg(r,t→0)5d3(rW ) and g(r
51,t)50. The time-independentGKLV

(U) of KLV is defined, in
analogy withGKLV in Eq. ~11!, as the integral over time with
the constantEC to make the eigenvalue spectrum positiv
i.e.,

GKLV
(U) ~R,R8!5E

0

`

dte2(U1EC)t)
i 51

N
1

ai
3

gS urW i2rW i8u
ai

,
t

ai
2D .

~53!

It should be noted that the second argument in g is re
\t/2miai

2 , wheremi is the mass of particlei, but we have
7-11
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assumed\51 and\2/2m51 with all the masses the sam
A change of the scaling factor is the only change neces
for unequal mass particles.

The functiong(r,t) is easily calculated from the eigen
function expansion of Eq.~52! to be

g~r,t !5
1

2r (
n51

`

n sin~npr!exp~2p2n2t !

5
1

rA~4pt !3
expS 2

r2

4t D1
1

rA~4pt !3 (
n51

`

~r12n!

3expS 2
~r12n!2

4t D2~r22n!expS 2
~r22n!2

4t D .

~54!

The second equality is the result of using the Poisson s
mation formula on the eigenfunction expansion. The resul
the Poisson formula can be recognized as the contribut
for a unit source at the center of the sphere and a set of im
sources outside the sphere. Only five terms of the series
required to obtain convergence machine precision on 64
computers for small t (t,0.11) using the second form an
for large t (t.0.11) using the first.

The integral overd3r of g(r,t) is necessary to sampl
new positions fromG(U). To machine precision, again only
few terms are needed,

h~ t !5E
0

1

d3rg~r,t !

55 22(
n51

4

~21!nexp~2p2n2t !, t.0.16

12
2

Apt
(
n51

2

expS 2
~2n21!2

4t D , t,0.16

.

~55!

The surface term,2n̂•¹W G(U)(R,R8,t), is calculated using
Eq. ~51! as

2n̂•¹W G(U)~R,R8,t !u]D5e2(U2ET)t(
i 51

N
21

ai
4

g8S 1,
t

ai
2D

3)
j Þ i

1

aj
3

gS urW j2rW j8u
aj

,
t

aj
2D . ~56!

Sinceg is spherically symmetric, the normal derivative is
constant. Its normalization is

2
d h~ t !

dt
5E d3rF2

]g~r,t !

]t G5E d3r@2¹r
2g~r,t !#

524pn̂•¹Wrg~r,t !ur51 . ~57!

This is just a consequence of current conservation in
analogous diffusion problem. The flux through the bound
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is just the negative of the density change in the domain. W
these results, the normalizations ofG(U) and2n̂•¹W G(U) are
known and each of these distributions can be sampled o
the timet is chosen.

All of the sampling techniques we have described in t
section are essentially a restatement of the constructions
ployed by KLV. Their method of choosing the time sampl
it from the exponential in Eq.~53!. Our formulation, thus far,
has been toward implementing our first algorithm as emb
ied in Eq. ~25! and its coordinate space manifestation, E
~47!. That algorithm requires that we sample a time from
2](nG̃n j

(U)(t8)/]t8. The sum over final states in this expre
sion includes both diffusion that terminates inside t
spheres and diffusion to the surface. We will consider b
processes in the following section.

2. Sampling the domain Green’s function G„U…

The time derivative of the domain Green’s function is
probability density in the two variablesR and t, since it is
positive definite and normalized,

E
0

`

dt8E
D

dRS 2
]

]t8
G(U)~R,R8,t8!D 51. ~58!

This follows from the conditions thatG(U) is d(R2R8) at
t850, and zero att85`. Having constructedG(U) analyti-
cally in the preceding section, we wish to sampleR and t
from the probability distribution function, in the form w
need it. Since it is a joint probability distribution function i
two variables, we can write it as the product of a margin
probability distribution function fort and the condition prob-
ability distribution function forR given t,

2
]

]t8
G(U)~R,R8,t8!5F 2

]

]t8
G(U)~R,R8,t8!

E
D

dR2
]

]t8
G(U)~R,R8,t8!

G
3E

D
dRF2

]

]t8
G(U)~R,R8,t8!G .

~59!

The rightmost factor in this equation is the marginal pro
ability distribution function, the probability of sampling
time t independent of the value ofR sampled. The condi-
tional probability distribution function in brackets is th
probability that anR is sampled, given thatt was sampled.

We can transform the probability distribution functio
into a form that can be used for our purposes becauseG(U)

satisfies the Schro¨dinger equation, Eq.~43!. If we integrate
both sides of Eq.~43! over the domainD and over the time
domain, we find that the unit normalization can be expres
as three terms:
7-12
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15E dR G(U)~R,R8,t !

1E
0

t

dt8E
D

dR9~U2ET!G(U)~R9,R8,t8!

1E
0

t

dt8E
S
dR9@2n̂9•¹W 9G(U)~R9,R8,t8!#. ~60!

The first term on the right is the integral fromt85t to t8
5`. The last two terms are the integral up tot. The last two
terms are obtain by substitutingH (U)2ET for the time de-
rivative, then transforming the Laplacian to a surface in
gral.

There is a one-to-one correspondence between the t
in Eq. ~60! and the normalization condition for the case
ideal sampling given by Eq.~50!. As we will show below, we
can sample all the terms in Eq.~60!. Then we will use this as
a step towards our ultimate goal of sampling the terms in
full Green’s function equation, Eq.~47!, when a nonideal
importance function is used. We will use the corresponde
between Eqs.~60! and ~50! to construct the approximat
probability distribution functions that we sample, and th
modify them by the appropriate corrective weights.

The first term in Eq.~60! equals the probability thatt8,
sampled from the marginal probability distribution functio
will be greater thant. The second and third terms are th
integrals of the joint probability distribution function overD
~includingS) and up to timet and have the value equal to th
probability of sampling a timet8 less thant.

From this equation, we can see that if we want to sam
the marginal probability distribution function int8 over the
interval 0,t8,`, then we may sample from

E
D

dR9~U2ET!G(U)~R9,R8,t8!

1E
S
dR9@2n̂9•¹W 9G(U)~R9,R8,t8!#, ~61!

and this is the marginal probability distribution function
Eq. ~59!.

In our algorithm, if the time sampled is less thant, then
we need to sample the conditional probability distributi
function in Eq.~59! for a positionR. The marginal probabil-
ity distribution function fort8 in Eq. ~61! is the sum of two
distributions. If t8 is sampled from the first, thenR is
sampled from the interior point ofD and the conditional
probability distribution function for that distribution is th
integrand of the first term. Ift8 is sampled from the secon
distribution, then likewise a point on the surface is to
sampled from the integrand.

Having outlined the steps needed to samplet andR from
Eq. ~59! we can now specify the particulars needed to sam
each of the terms in Eq.~60!. Our first step is to sample
time from the distribution in Eq.~61!. This can be done by
sampling a timet8 from the probability density
01670
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P~ t8!52
d

dt8
F)

i 51

N

hS t8

ai
2D e2Ũt8G . ~62!

The constantŨ is U2ET , but later we will want to gener-
alize the procedure so we will treat it as a an arbitrary po
tive constant. Equation~62! can be sampled by taking th
minimum of the times sampled from each2dh(t8/ai

2)/dt8

and Ũexp(2Ũt8). ~This is an example of a combinatoria
sampling method discussed in Ref.@30#.! The former can be
sampled by direct application of the transformation meth
@30#,

t i5ai
2h21~j i !, ~63!

and the latter from

t052
ln~j0!

Ũ
, ~64!

wherej0 throughjN areN11 independent random numbe
on the interval (0,1).

By taking the smallest time of theN11 values sampled
above, we have sampled a time from the probability dis
bution function of Eq.~61!. Because we know whicht i was
the smallest, we also know the term in Eq.~61! from which
t8 was sampled. The probability that thet8 sampled from
2dh(t8/ai

2)/dt8 is the smallest is the probability of sam
pling t betweent and t1dt times the probability of all the
other t8s being larger, which is

2
d

dt8
FhS t8

ai
2D dt8)

j Þ i
hS t8

aj
2D e2Ũt8G . ~65!

Equation ~65! is the normalization of the
2n̂•¹W i9G

(U)(R9,R8;t8) term if Ũ5U2ET . Similarly, if the

t8 sampled fromŨe2Ũt8 is the smallest, the probability is

Ũe2Ũt8dt8)
i

hS t8

ai
2D , ~66!

which is the normalization ofŨG(U)(R9,R8,t8).
Knowing t8 and knowing the term from which it wa

sampled allows us to sample the new positionR9. If the
t8 from Ũe2Ũt8 is smallest, sample anR9 from
G(U)(R9,R8,t8)/*dR9G(U)(R9,R8,t8). This latter sampling
is simply done by sampling ar for each particle from
g(r,t8/ai

2)/h(t8/ai
2) and letting urW i2rW i8u5air. Sampling

from the surface term is very similar. If the smallestt8 was
sampled from2dh(t8/ai

2)/dt8, then to sample the surfac
derivative ofG(U), the position of thei th particle must be
sampled at the surface of its sphere, and the other part
sampled as before. Since the normal derivative ofg(r,t8) is
independent of position on the surface, this can be ea
accomplished by samplingr values as above and simpl
promoting particlei randomly to the surface of its spher
7-13
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Routines to sampler from g(r,t)d3p and t from
2d h(t)/dt are available in the literature@39#.

The above procedure sampled time and position from
~61!. To complete the desired sampling of Eq.~60!, we need
only to check if the smallest time sampled was greater t
the time stept. If so, then sett85t and sample the new
location from the interior of the domain as described abo
That location has then been sampled from the integran
the first term of Eq.~60! and we have sampledG(U).

C. Importance sampling the full Green’s function
in coordinate space

The above section presents a way of sampling time
sampling positions for a probability distribution functio
which has the same domain,t8P(0,t) and R9PD and R9
PS, as the terms in the full Green’s function equation, E
~47!. Our analysis of the ideal case told us that the samp
of position and time should be done from Eq.~50!, even if
the importance function is not exact. Since exact samplin
Eq. ~50! is not possible, we must introduce weights. W
could proceed by simply taking the three terms of Eq.~60!
and multiplying and dividing each term in the full Green
function equation, but that defeats the whole effect of imp
tance sampling. Instead, we modify the sampling proced
for G(U) to make it more closely resembleG̃(U), and then
multiply and divide corresponding terms of the full Green
function equation.

We begin by changingŨ from U2ET to

Ũ5@U2V~R8!#. ~67!

This choice is not unique. Whatever change is made toŨ
must be compensated for with appropriate factors include
the weight terms to correct for this difference. This chan
tends to increase the number of volume steps selected w
corresponds to picking the first term in Eq.~47!.

The inclusion of some effect of the importance functio
cT(R8)/cT(R), in G̃(U) is done by using its gradient to se
lect the direction ofrW i82rW i . This is accomplished by expand
ing

cT~R8!

cT~R!
')

i
~11u¹Wi ln c~R!uurW i82rW i ucosu i !

')
i

~11min~ u¹Wi ln c~R!uurW i82rW i u,1!cosu i !,

~68!

whereu i is the angle between the gradient andrW i82rW i . The
min function constrains the expression to be positive defi
so that is can be used as a probability density. The right-h
side of Eq.~68! can be recognized as a sum of a uniform a
linear distribution in cosu since the solid angle element
d cosu df. Thef is sampled uniformly. After sampling from
Eq. ~68! we must, as usual, include an additional correct
factor in the weight for the walker which is simply
01670
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Wc~R,R8!5
cT~R8!

cT~R! )
i

@11min~ u¹W i ln c~R!u

3urW i82rW i u,1!cosu i #
21. ~69!

The choice ofŨ, EC , and theai ’s should be done to
maximize approximately the average timet8 per step. Typi-
cally, there is a large range of values that give similar resu
The complete algorithm for a 3N dimensional code is the
following.

~1! Select a walkerRi from the previous time step. Th
iteration of the equation is complete when no previous wa
ers remain. Calculate itsU,V(Ri), the ai ’s, and the trial
wave function value and gradient.

~2! Sample the smallestt8 from the N surface terms
2dh(t8/ai

2)/dt8 and from Ũexp(2Ũt8) with Ũ5@U
2V(Ri)#. If t8.t, sett85t.

~3! Sample distancesurWm2rWm8 u5ram from g(r,t8/am
2 )

with t8 the smallest from step 2.
~4! If a surface time of particlek is the smallest~and less

than t) make its urWk82rWku5ak , then ~i! sample the set of
anglesu i from right-hand side of Eq.~68!, and calculate
weight Wc , and ~ii ! set t5t2t8, assign the weightWc to
the walker, and continue the walk step 1.

~5! If the volume time sampled fromŨexp(2Ũt) is
the smallest~but less thant), then assign angles as abov
and calculate the weight W5@U2V(Ri8)#/@U
2V(Ri)#Wcexp„@ET2V(Ri)#t…. Move the walker toRi8 .
Set t5t2t8, assign the walker the weightW and restart the
walk at step 1.

If the volume time sampled is greater thant, then set it to
t and sample the angles as above and calculate the we
W5Wcexp„@ET2V(Ri)#t…. Move the walker toRi8 , assign
the walker the weightW and the walk terminates.

The weight factors above were ‘‘assigned’’ to the walk
In the most common implementations of GFMC, this mea
that when a walker is selected from the previous generatio
is assigned a weight of unity. All subsequent assignme
multiply this weight. If the walk does not terminate, butt is
reset tot2t8, the walker retains its weight when it reinitiate
the walk for the remainder of the time step and the wei
continues to be assigned. In the final step above, when
walk terminates, one takes the integer part of the weight p
a random number,W1j, and if this is greater than one, on
replicates the walker and that number of new walkers beg
the next time step. If the integer is zero, then the walke
eliminated from the population in the next time step.

The process is repeated for as many time steps as req
for the simulation to converge and enough statistics to
calculated to accurately determine the desired averages.

VI. APPLICATION TO THE EFFECTIVE MASS PROBLEM

An advantage to using the imaginary-time formalism
that it allows one to calculate imaginary-time correlati
functions directly. A straightforward application would be
calculate the effective mass of impurity atoms~such as a3He
atom! in liquid 4He. Here we will apply the method to
7-14
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GREEN’s FUNCTION MONTE CARLO METHOD WITH . . . PHYSICAL REVIEW E71, 016707 ~2005!
distinguishable4He atom in liquid 4He.
The effective mass of the impurity is given by calculati

the diffusion constant of the impurity in the imaginary-tim
simulation. This is easily understood by looking at the tw
time density-density distribution function of the impurity.
we were looking at a free particle, this distribution functio
is simply the three-dimensional Gaussian Green’s funct
with width s5(\2t/m)1/2, so that its diffusion constant i
\2/m. The impurity’s density-density distribution function
not in general a Gaussian. However, at long times, the p
tions of the background liquid4He atoms become uncorre
lated, and the distance the impurity moves in a timet will be
given by a sum of uncorrelated random variates. So for tim
much longer than this correlation time, the distribution
positions will again be Gaussian. The width of the Gauss
s5(\2t/m* )1/2, defines the effective mass.

The standard method to define the effective mass of
impurity atom is to look at the long wavelength limit

1

m*
5 lim

p→0

1

p

]E~p!

]p
, ~70!

whereE(p) is the energy of the system with the single pa
ticle excitation, corresponding to the impurity, having m
mentum p.

This is equivalent to our diffusion constant expressio
One way to verify this is to imagine a direct calculation
E(p) using Green’s function Monte Carlo. We add to t
Hamiltonian an external potential that is zero when impur
hasz coordinate 0,z,L, and is positive infinity otherwise
We assume that the system without the external potentia
solved using Green’s function Monte Carlo. For conv
nience, we also assume that the time stepDt for the Green’s
function Monte Carlo calculation is small. In that case, t
simulation with the external potential could done as in
exact imaginary-time formulation for a single particle. At th
end of a step we simply ask if the impurity has left t
interval 0,z,L. If so the walker is removed. If not, th
walker is given a slightly larger weight exp@E(p)Dt#. E(p),
the growth estimate for the excitation energy, is chosen
keep the average number of walkers constant. The dyna
for large L is identical to that for a single particle. If th
energy of this system is calculated using Green’s funct
Monte Carlo, the energy of the excitation will be set by t
time it takes the impurity to diffuse between the two limit

A. Numerical results

The time-step algorithm of Sec. V was carried out for
system of 644He atoms interacting through the HFDHE
two-body potential given by Aziz@40#. GFMC calculations
with this potential have been shown to produce the gro
state properties of liquid and solid helium accurately@41#.
Periodic boundary conditions were employed. The imp
tance function included two- and three-body correlat
terms@42#.

The algorithm was initially used to calculate the equili
rium ground state energy by carrying out 1000 time steps
size 0.001/K. The calculation required a simple modificat
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of the usual GFMC time-independent algorithm. We o
served no differences in the convergence of the two meth
either in CPU time or in variance.

An equilibrated population of 1000 walkers was the sta
ing point of the calculation of the imaginary-time diffusio
constant. Each walker carried a unique tag, so that i
branching process occurred, progeny would be given a n
unique tag and would retained the tag of the parent wal
The calculation was carried out so that after each time s
the entire population with identification information wa
stored. With the identification information, the parent wa
ers could be traced back through every step of the sim
tion. Each atom in each walker was thus distinguishable.
any atom at a timet, the quantityurW(t)2rW(0)u could be
calculated.

Figure 1 shows the average value of the mean squ
displacement calculated versus imaginary time. As expec
from our discussion above, the initial slope reflects the b
mass of the helium atom and is 1.0 based on a simply
serving that them* 51 line in Fig. 1 matches the slope ne
the origin. The linear asymptotic form is achieved quick
after no less than 0.1/K in imaginary time. In spatial term
this is about 1 Å, or about the average inter-particle spac
It is somewhat unexpected, that in less than 1 Å, the part
which moves in imaginary time are essentially uncorrela
with the original position. Fitting this form over the last ha
of the graph yields a slope ofm* 51.606.01m, for an ef-
fective mass four impurity.

We calculate the diffusion of a mass-four distinguisha
atom with interactions identical to all other helium atom
because the process of exchange in a real helium fluid ca
the effective mass to lose physical significance. The defi
tion in terms of the excitation spectrum fails because th
are no excitations with the quadratic form required in E
~70!. Alternatively, one can understand this in terms of t
fact that the simulation, as we have described it, does
include the symmetry requirement that the ground state
symmetric under exchange of particle coordinates. The
son ground state simulation remains exact without the s
metry requirement as long as we calculate expectation va

FIG. 1. Mean square diffusion distance vs imaginary time fo
distinguishable mass-four helium atom. Short time slope indic
bare mass and long time slope indicates effective mass.
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SCHMIDT et al. PHYSICAL REVIEW E 71, 016707 ~2005!
averaged over all possibleN! exchanges of particle coordi
nates. Expectation values relating correlations of quanti
at different imaginary times must also average over all
changes to be correct. Such an average would yield an
nite diffusion constant consistent with the zero effect
mass calculated from Eq.~70!.

GFMC imaginary-time methods can be applied to obt
other dynamical physical properties with appropriate use
transforms implemented with, for instance, maximum e
tropy techniques@8,9,43,44,12#. Another application is the
determination of the effective mass of truly distinguisha
impurity atoms such as3He @45#. Such calculations require
significantly more computational time. A few hours of tim
on a 100 MFlop computer is sufficient to produce the res
in Fig. 1. This is due to the fact that all helium atoms cou
be tracked in the diffusion process, not just one atom o
walker.

VII. CONCLUSION

We have presented an exact form of a GFMC calculat
that iterates the imaginary-time propagator with no time-s
errors. Our description includes implementations for latt
Hamiltonians, continuous-spaceN-body problems, and
J.

, J

ys

s.

n

d

m

01670
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n
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simple field theories. We have demonstrated that in th
classes of problems there is no increased computationa
algorithmic complexity; indeed, simple alterations to existi
computer codes are all that is required in each of the
amples. Our calculation of the pseudoeffective mass o
helium added to liquid helium was included as a tangi
example of the implementation of the coordinate space fo
where we could calculate all of the usual ground state pr
erties and extend this to an imaginary-time quantity pre
ously inaccessible to time-independent and pseudotime a
rithms. We have observed that popular implementations
imaginary-time propagator algorithms are approximate a
require significant additional programming and tests
time-step errors. An algorithm with fewer heuristic modi
cations and a guaranteed time-step independence is off
as a replacement.
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