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Green’s function Monte Carlo method with exact imaginary-time propagation
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We present a general formulation of the Green’s function Monte Carlo method in imaginary-time quantum
Monte Carlo which employs exact propagators. This algorithm has no time-step errors and is obtained by
minimal modifications of the time-independent Green’s function Monte Carlo method. We describe how the
method can be applied to the many-body Sdirger equation, lattice Hamiltonians, and simple field theories.

Our modification of the Green’s function Monte Carlo algorithm is applied to the ground state of figeid
We calculate the zero-temperature imaginary-time diffusion constant and relate that to the effective mass of a
mass-four “impurity” atom in liquid “He.
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[. INTRODUCTION In Sec. I, we give an overview of Green’s function Monte
Carlo methods and then discuss the general formulation that
The first effective quantum Monte Carlo method, thecircumvents approximations. We show how the exact
Green’s function Monte Carl6GFMC) method as developed imaginary-time propagator can be implemented by a slight
by Kalos[1,2], can calculate the exact ground state of amodification of the method described by Kalos, Levesque,
many-body system. It has been applied to a wide class cdnd Verlet(KLV) [2] for the exact time-independent propa-
many-body problems that include many-boson systemsgator. We show how the method can be applied to a lattice
quantum lattice Hamiltonians, and simple field theofigs ~ Model in Sec. Il and compare our implementation to quan-
It is generally applicable to many-body problems where thdum simulations of the spig- Heisenberg antiferromagnet
Green’s function is positive definite and can be used as 1l In Sec. IV we formulate the exact imaginary-time
probability density that produces the random walks in themethod for a simple scalar field theory and relate it to the
simulation. method of Carlson{22]. We describe a coordinate space
Since Kalos’ original work, several alternative quantumimplementation appropriate to the many-body Sdimger
simulation methods have been developed. Here we will comeguation in Sec. V. Finally, in Sec. VI we use our method to
pare with one popular alternative, the imaginary-timecalculate the zero-temperature imaginary-time diffusion con-
Green's function Monte Carlo method as developed bystant of liquid helium and relate this to the effective mass of
Anderson, Kalos, Ceperley, and othpts-6]. For calculating ~mass-four “impurity” atoms.
response functiong-12] it is convenient, but by no means
necessary, to use the imaginary-time propagator, €40, ||, THE GREEN'S FUNCTION MONTE CARLO METHOD
whereH is the Hamiltonian and is the imaginary time. The
imaginary-time GFMC is able to carry out ground state Here we review the Green's function Monte Carlo
simulations that solve the time-dependent Sdimger equa- method, first showing the formal relationships between the
tion in imaginary time. The imaginary-time GFMC method various propagators and then describing our implementation.
has the advantage of being more intuitive but it is generallyVe include in our discussion the class of Monte Carlo imple-
implemented approximately. These approximations havénentations of iterative schemes to calculate the ground state
been addressed by many authors, but, while ekhgfl4  for a Hamiltonian, particularly time-dependent, imaginary-
and nearly exacf15—19 variations have been developed, time, and pseudotime formulations.
they have not enjoyed wide use because of their increased
complexity. _ o _ A. Formal relationships among propagators
This paper presents an exact algorithm for imaginary-time . L i . .
propagation that is theoretically and computationally a 1he Schrdinger equation in imaginary time is
simple extension of the Kalos time-independent GFMC Ju(t)
method [2]. This algorithm retains the advantages of the Hiy(t)=— ——. (1)
time-independent formulation in that it does not suffer the Jt
ills of the approximate time evolution propagators, e.g.,
time-step errors, node crossing, and singular behavior witiHere, and in all equations that follow, we have assumed
coulomb and other divergent potentials. This paper will focugime units in which Planck’s constatt is unity) The ab-
on the formal relationship between time-dependent and timesence of the usua/—1 in Eq.(1) makes it a diffusion equa-
independent exact propagators and the construction arttbn in a many-dimensional space. In the diffusion analogy,
implementation of our propagator. ¢ is a time-dependent density that evolves in time as pre-
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scribed by the imaginary-time Green’s function or propaga-and is also formally analogous to the power method. This

tor. The time evolution is governed by the imaginary-timerequires that a constakt. be added td1 to make the eigen-

propagator value spectrum positive definite. The largest eigenvalue of
the Green’s functiorithe inverse of the shifted Hamiltonian

G(t)=exd —(H—Eq)t], (2 is the inverse of the shifted ground state energy, and the

power method applies. An eigenstatetbfof energyE then

whereE is a trial energy, eventually set to the calculatedsatisfies the Green’s function equation,

ground state energy.

The imaginary-time Green’s function Monte Carlo 1 ” G ®
method numerically iterates the equation Ect+E Ec+H =Gy
p(t+An=e” mED3y(1), (3)

The rightmost equality in this equation defines the KLV
. . Green’s function.
to obtain y(t—) which converges to the lowest energy  promgG,,,, one forms the KLV propagator equation to be

state contained igy(t=0) (normally the ground stateFor- jeratively applied to an approximate ground state,
mally, convergence occurs because the amplitude of any ex-

cited state component of ener@yin the initial wave func- Ec+Er
tion is diminished by the factor = (Ec+E7)GyLyb= EH i, 9
C
e (E-Epat (4)

with a trial energyE adjusted to equal the true ground state
energyE,. With each iteration, the amplitude of an excited
state component of enerdy is diminishes by a factorE;
+E+7)/(Ec+E).

One can compare the KLV propagator, Ef), and the
short-time approximation to the imaginary-time propagator,

after each time stept.

Propagators other than E() have been used to obtain
the ground state. For smallt, the linear term in the expan-
sion of the propagator in Eq2),

1—(H—Eq)At (5) Eq. (6). The KLV propagator can be written as
can be employed. This propagator is only useful if the spec- EctEr =[1+(H—EpAt] L (10)
trum of H is bounded above as well as below, i.e., for a finite Ec+H

basis such as those encountered in finite lattice problems

[23-26. To ensure the positive definite character of theThe equality determines the relationship between the con-
propagator, the off diagonal elements of the Hamiltoniarstant energyec and the “time step,”"Ec+Er=1/At.

must be negative and one must choagesmall enough so The KLV propagator, Eq(9), can also be written in terms
that the second term in E@5) is less than unity. As in Eq. of the full imaginary-time propagator, E(), as

(4), application of this operator means that the amplitude of

any excited state component of enefgyn the initial wave (Ec+E)Gky=[1+(H-EpAt]?

function is diminished by the factor 1(E—E+)At after B

each time stepAt. This method is equivalent to the well- =~ | dte (H-Eptg-tAt (11)
known “power method” [27] used to find the largest AtJo
eigenvalue/eigenvector of a matrix. The constantand the

factor At serve to shift and scale the eigenvalue spectrum so The KLV method uses this equation to sample the propa-
that the ground state of the system has the largest magnitudgtor G¢, of Eq. (8). The right-hand side of Eq11) is

eigenvalue of Eq(5). applied to a wave function and the integral over time is per-
An operator which avoids the problem of the small timeformed by sampling a time. The propagation of the single
step needed by E@p) is point is then carried out for that sampled time and, when
repeated for many points, provides a correct statistical aver-
N1+ (H-Eq)At]. (6) age of the integral over all times, i.e., the left-hand side of
Eqg. (112).
This propagator and the propagator of ES) are equal to The above analysis then reduces to the simple statement

the imaginary-time Green'’s function to lowest orderAkn. that when the KLV method makes a Monte Carlo move, it is
The iteration of all three propagators will converge to themade with the imaginary-time propagator for a time ran-
true ground state, but only for the full imaginary-time domly sampled from exp{t/At)/At. We have glossed over
Green’s function does the variablé™have the significance the details(see KLV [2] and Sec. V, but this observation

of (imaginary time. points us to the minor modification of the KLV method re-
The KLV method[2] solves the time-independent Schro quired to exactly sample the imaginary-time propagator. We
dinger equation need only enforce a specific time step in each propagation to
change the algorithm to provide an exact sampling of the
Hy=Ey, (7) imaginary-time propagator.

016707-2



GREEN’s FUNCTION MONTE CARLO METHOD WITH . .. PHYSICAL REVIEW E1, 016707 (2005

B. Iterative equation for the imaginary-time propagator example, we have a very good understanding of the two- and

For most problems, the exact imaginary-time propagatofré&-body correlations in the ground stg3a—34.

is not known in an analytic form, but a procedure for exactly, !N this section we formulate importance sampling and the
sampling it can be developed. An integral equation for thdmplementation of the exact imaginary-time algorithm on a

full imaginary-time Green’s function can be formed if a problem with a finit_e basis. While a finite basis is_ USL_IaIIy

Green's function GV(t) is known for a Hamiltonian encounte_red in lattice p_roblems, this representation in no
HU(t) [13,14. (HY is often taken independent bf The way resmcts the ge_nerallty of what we W|I_I present. Section

known Green's function satisfies V contains the continuous space formulation.

In the finite basis, the matrix elements of the Hamiltonian
aGM(t) and Green’s functions are finite matricés;, , G;;(t), and
— 120 G{"(t), and the wave function is a finite vectas(t). The

fundamental equations, Eg®) and (14), become

and will be the starting point for sampling the exact Green'’s

(HO()~EnGM(t)= -

t
function. While one usually choosét") to be an approxi- Gij(t)zei(ju)(t)va dt' >, G(t—t")
mation to the Hamiltonian in question and solves @) for o
(GO inci V)
G'™, in principle, one could choosB'~’ and use Eq(12) X[H(kLlJ)(tr)_Hkl]GI(jU)(t/), (15)

as definingH“). An approach of this sort has been followed

by Ceperley[20], producing a generalization of the KLV

algorithm. Pa(t+ A=, Gom(A) (1. (16)
The construction of the exact Green’s function begins m

with the identi . : .
v Given some analytic approximate ground state wave func-

P tion, with a real amplitudey(m), on themth basis state,
ef(H*ET)tzc;(t)ze(U)(t)_f dt'—{G(t—t" )G (t")], we use it to define a new set of propagators and densities in
0 Jt the usual way by writing
(13) )
(1) = (M) (1),
where we have used the condition ti@&¢0)=G")(0)=1,

the identity operator. Substituting the known time derivatives ~  Yr(MHny
from Egs.(2) and(12) into Eq.(13) yields nm_W’

t

G(t)=G(U)(t)+f dt'G(t—t)[HW(t")—H]GW(t"). BW(t)= 'ﬁT(n)Gnm(t),
0 nm gr(m)
(14
= _ lr/lT(n)Gnm(t)

This is the formal representation of the imaginary-time Gnm(t)= Tm) (17)

Green'’s function which will be the basis of the procedures

we develop in the remainder of this paper. This equation is  The importance sampled propagatdefines a new ran-
well known in real-time scattering theof28] and was pre- dom walk with a new densityi(t) = grr(m) o (). Be-

viously employed in a formulation of a generalized h densi h d f the trial
imaginary-time diffusion Monte Carlo methdd3,14. It is cause the new density converges to the product of the tria
the exact implementation of the relation in imaginary—timewave function and the exact wave fur_lcuon,_lt 1S nearly equal
GFMC with a fixed time step that is the substance of thisto the true guantum probability den3|ty. This is qnly one of
paper. the_ quantqges of importance samplmg. Substituting these
Variations of the above formalism have been implemente ef'mt'ﬁns m:]o om;r f_undamental equ&;ﬂgns, E(;];S) and .

for both time-independer]20] and time-dependent GFMC 16), shows that the Importance sampled equations are sim-
[1,29], but it can be made far more efficient when statisticalpIy given by writing a tilde over all quantities. These equa-
fluctuations in the simulation are reduced by importancetlons’
sampling. Importance sampling is a general technique for ~ 5 t ~

reducing statistical fluctuatior{80], described for quantum Gij(t):Gi(jU)(t)‘f'f dt’E Gij(t—t")
simulation by KLV. Importance sampling and the technicali- o
ggztiglr\]/c;xgdsév(;lll \Ee discussed in detail in the following X[H(klf)(t’)—Hk|]G|(jU)(t’), (18

C. Importance sampling hl/’fn(t+At):%: Gm(A) Pin(t), (19

Importance sampling utilizes an approximate form of the
ground state wave function to significantly improve the effi-are used in the numerical implementation in the following
ciency of the Monte Carlo calculation. In liquifHe, for  sections.
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Carrying out an iteration based on E@9) is simple if we  This follows from the definition ofG, the hermiticity of
suppose for a moment th&,,,, is known. Initially (and at G, and the fact that the time-independent satisfies Eq.
every iteration of the calculatigrone has an ensemble of (16). Unit normalization means each input walker will pro-
points called “walkers” distributed over the basis states withduce exactly one output walker when perfect importance
a probability proportional t@,. Each walker is moved from Sampling is used.

a statem to a staten with a probability proportional t&,,. 10 sampleG;;(t), we mean that we have a walker at site
While G, is positive definite by construction, it is not nor- ] and we wish t(_)_select a S|t€_fr0m all p_oss_lple final sites so
malized in the sense that summing over all possible finaf"at the probability of selecting a particulais proportional

positions does not necessarily yield unity, to G;jj(t). We use Eq(13) to expandG(t) in terms of the
known G,
<> Gpn#1. 2 ~ ~ t J ~ ~
0=2 Gt (20 Gij<t>=Gi&“><t>+f dv(—;[z Gik(t—t'>e(k,-”)<t'>D.
0 ! k

22

As a result, unlike classical Monte Carlo, the number of (2
walkers in the ensemble may change during the iteration. ~ The unit normalization of perfect importance sampling

For a walker moving from a stats, if the sum in Eq(20)  from Eq.(21) tells us that for any sitg the two terms on the
is less than unity, then the sum is the probability that thgight of Eq. (22) have normalizations that add to unity. We
walker will not be eliminated from the simulation. If the sum may thus sample the sitefrom either term if we first select
is greater than one, the algorithm must produce, on an avethat term with a probability proportional to its norm. The
age, more than one walker. The exact number of resultingrobability of selecting the first term @iéi(ju)(t), and the
walkers at the new positions may vary from one iteration toprobability of selecting the second term is just one minus
the next, but must, on average, equal the magnitude of thgis.
sum in Eq.(20). Only after many iterations, when the en-  |f the first term is chosen to be sampled, then a it

semble representing(t) for larget has converged anly  sampled fronG{{”)(t) and the process of moving one walker
has been adjusted to be the ground state energy, will the totghe time stept has been completed. If the second term is
number of walkers in the ensemble be constant on the aveselected, then we proceed by recognizing that the integrand
age. is positive definite and can be normalized to form a joint
Improvement in the efficiency of the calculation with im- probability distribution for the variables and t’ e[0t].
portance sampling results from an enormous decrease in stgince it is a joint probability distribution function in two
tistical fluctuations of the number of walkers or in the den-variab|e& we can write it as the product of a margina| prob_
sity representing the ground state accompanied by a larggyility distribution function fort’” and the conditional prob-
decrease in the statistical fluctuations of expectation valuegpility distribution function fori, givent’. We shall con-

In practice, the calculation may be quite close to the ideaktryct these probability distributions explicitly in the
case where there are no population fluctuations. The alggoliowing section.

rithm is designed to make use of the information in the im-  The probability of sampling the second term in E2p) is
portance function and we therefore begin by considering thgiso the sum over final stateks, The expected number of
case of perfect importance sampling, when the exact groungalkers, using perfect importance sampling, produced by the
state is used as the trial wave function. second term for a value df in an intervaldt’ is

1. Ideal importance sampling 0 -
. . . dt’(——E Gf}-”(t’)), (23
With perfect importance sampling one would haye at’ !
=y, and Ey=E, where )y and E, are the exact ground
state wave function and energy. While, we do not know thessince the sum overin the second term of E¢22) eliminates
quantities, we design the algorithm so that there are no popyhe G by using Eq.(21).

lation fluctuations in this limit. If we sample a timeé’ from the probability distribution of
In the process iterating Ed16), the GFMC repeatedly Eq (23) over the interval 6<t’ <<, the probability that is
moves an ensemble consisting of a list of walk@sordi-  ghorter thart’ is just the probability of picking the first term.
nate$ that are sampled fronk(t) to new positions sampled The probability that is longer thart’ is the probability of
from P(t+At). The expected number of walkers resulting picking the second term. In other words, we may choose to
from an initial walker at staten is given by the sum in Eq. have the walker on sit¢ make a time steg to a sitei
(20) which, with ¢+ replaced byy, in Eq. (17), becomes selected from the first term or the second term of &)
unity, depending on whether a timé sampled from Eq(23) is
shorter or longer than the time step
This structure has a simple physical interpretation. The
2 e (t)=z $o(N) Gnm(t) -1 (21) timet is the time the walker must propagate to finish the time
woo n Po(m) step. We sample a timté which is the time for the walker to
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“scatter” corresponding to the difference betwe&hand “optimal” for nonideal importance sampling. _
GW._ If the time to finish the time step is smaller, then the W& Wish to sample a new locatiarior a walker aj from

walker does not scatter and the walk is completed by samG;j(t) using Eq.(22), or equivalently Eq(16). We assume

pling from G(Y). If, however, the time¢’ is smallest, then the that we have constructed the time independ,Janandﬁ(U),
scattering takes place before the walker completes its timgnd are able to sample a positiorirom E;i(jU)(t’) for any
step. The second term must then be sampled. For this i@ne t'<t. These assumptions are common to both algo-
work we require that Eq(23) defines a normalized probabil- (ithms.

ity density on B<t’ <, i.e., With nonideal importance sampling, we lose the unit nor-

GU(t' »»)=0. (24)  malization oféij(t) that was the basis of E¢21) and the
sampling method described in Sec. Il C 1. This is compen-

For a time-independerti(”), this means that the ground sated for by weighted sampling techniqudescribed beloyw
state energy oH") is higher thanE;. Once a term is se- which produce an average number of walkers equal to the
lected, we sample the states of the walkers with probability.orrect normalization.
again given by the expected contribution of that state to the The two algorithms we will consider differ primarily in
number of walkers. We note that the asymptotic requiremenfhe manner in which a new positioris to be sampled from
in Eq. (24) is just a matter of convenience to simplify the
sampling process because the va@@’)(t’) for t'>t is
never actually needed.

G or the correction term in Eq16). The first algorithm
adopts the approach that, for a good importance function, the
relative weights of these two choices should be approxi-
mately given by the same condition of whethiérsampled

from Eq.(23) is less than or greater thanSince this method

In actual implementations, one must deal with a trial WaVe ¢ <olecting the first or second term in t& (1) equation is
function that approximates the ground state. Having chosen a 9 B8 q

trial function, the random walk and resulting density arenOt exact, we must assign compensafing weights to each

given by exactly implementing Eq18). Minimizing the t?‘”*? SO th_at the ex_p_ected number of walkers sz_impled for any

variance, for a given trial function, means minimizing the sitel startlng fromj is on the average correct, i.e., equal to

fluctuations in the population of walkers and this characterthe value ofG;;(t).

izes the optimal random walk algorithm. The weighted sampling techniques that we employ are
We will describe two implementations of the finite time- elucidated in texts on probability theof0]. We will pro-

step algorithm, both of which are exact in the sense that theyide here only the importance sampled equation and the al-

sample the exact Green’s function correctly on the averageyorithm to sample the position of the walker that is propa-

We will compare these methods to related implementationgated at time.

of the imaginary-time and time-independent algorithms, and To describe the first algorithm, we write the importance

discuss why one or the other may be considered more nearBampled Green’s function equation as

2. Nonideal importance sampling

2 [H%(t')—ﬁmn]éﬁ?)(t')

_ gw - _
Gij()= U [E G| + f t% [Gu(t—t)]y
26w | " p 0 > AR~ ErondB(1)
2 6
- - > AR -HL16M )
A () —Hy m m =l d -
X - 2 Gjndr |, (25
S RO Al | | S RO -Ae@ey | LT 3

5 4

where the subscripts on the brackets are simply labels thafjong with the numerator of term 6 and tBé") in the nu-
we can refer to in the text. The first thing to note is that EqQ.merator of term 4.

(25) is identical to Eq(22). Term 1 cancels the denominator  The algorithm to sample a new walker position from Eq.
of term 2. Term 3 cancels the denominator of term 6, wherg2s,) is the following.

we use Eq(12). The Hamiltonian part of the numerator of (1) For each walker at positignwhich needs to be propa-
term 4 cancels with the denominator of term 5. The denomigated, the time left to propagate tis(Initially, t is the full
nator of term 4 cancels with the numerator of term 6. Thistime step)

leaves the numerator of term 2 for the first term, and term 7 (2) Sample a timet’ (0<t’'<«) from the probability
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distribution of term 3. The probability that the tinté is  absorption factor, or it can be carried along with the walker.
greater thar is term 1; if the sampled’ >t, then sample a (5) Only term 7 is left. This is the full Green'’s function for
new statei from the normalized probability distribution walking fromk to some statein timet—t’. To sample term
given by term 2. The walker has now walked for a titne 7, we simply reset the time left—~t—t’ and repeat these
and the weight is one. This walker has finished its walk andsteps. Eventually, the sampled tinté in step 2 will be
been propagated a full time step. greater than the time left and the walk terminates.

(3) If the time in step 2 is less thah then we have The above algorithm produces exactly one output walker
sampled a time' from term 3. We now sample the interme- \yhen perfect importance sampling is used. Otherwise, the
diate statd _from the _normallzed probability distribution of weight, term 6, compensates for the assumptions made when
term 4, using the timet’ already sampled, to evaluate g5 hjing the terms so that the exact equation is reproduced
GU(t). even when the importance sampling is not perfect.

(4) Oncel is sampled, the intermediate st&tés sampled Many other algorithms that sample exactly like this one in
from term 5. The walker is now in stalgand we have taken he perfect importance sampling limit will sample differently

care of all but terms 6 and 7. Term 6 is taken to be the weighfy heny the importance sampling is not perfect. Our second
of the walker. If perfect importance sampling is used, th'salgorithm is an example of such a modification which in-

weight is one since in that case the local energy defined bycludes a term e>{pE}°°a'— E;)t] in the time sampling. With

ocal - perfect importance samplin&,}ocm: Er=E, being indepen-
En :é Humn (26) dent ofj, nothing is changed in that limit. In the nonideal
case, the sampling process must include the appropriate com-
is equal to the ground state enerdy. However, with pensating weights so that the algorithm remains exact. The
realistic importance functions, this term will not be identi- Green’s function equation can be written in the same way as

cally one. This weight can be included as a branchingbefore:

W) local __
éij(t):[ef(E:ocaLET)t]s Gij (Vexd (i Ep)t]

> B (pyelEn et
n

2 G (ex (Ep™—Ent] .
. 2

R () —Hyg

> AR () = Fm)

t ~ jocal ’
*f dt'> [Gy(t—t')Jgle” E-ENYY,
0 Kkl

6

;[Fiﬁn”.kt')—ﬁml]éfj”’(tvexp[(EI“a'—ET)t] ; -~
X - 2 e EY L (27)
I ’ I = ’ at’
(RS = Hmna GO (1) exd (ER—Ept] " 4
5

mn

The additional factors again cancel, leaving this equatiorierm 2. In the limit that the time step goes to zero, this is the
analytically identical to Eq(22). Feynman-Kac formul@35]. In both algorithms, large fluc-
For this second algorithm, the timéis sampled from the tuations inE'°¢®" will give a large variance. Since the algo-
probability density in term 4. We require term 4 to go to zerorithms are based on the assumption that a good importance
ast’—x, i.e., the ground state energy Gfy;(t') must be function is available, both formalisms can suffer large vari-
larger thanE[°°®— E for all n. If t' is greater than, statei  ances if the trial function is poor.
is sampled from term 2, and the walk is terminated with a In practice, we should select the algorithm that gives the
walker of weight given by term 3. If’ is less thart, stated  |owest variance for a given amount of computer time. Ex-
andk are sampled from terms 5 and 6 respectively, and th@ctly sampling terms 5 and 6 of E¢R7) can be difficult;
walk continues with a walker that needs to be propagategften approximations to these terms are used and the ratio of
from k to somei with weight given by term 7. _the correct term to the approximation is included in the
The advantage of this formalhsrln is that the weight term iyeight. These approximations will increase the variance of
always proportional to eXp-(E***—Eq)t] wheret is the  the results even in the perfect importance sampling limit.
time for i sampled fromG{|” either in the term 5 or in the They will not change the exact character of the algorithm.
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Il. A LATTICE HAMILTONIAN EXAMPLE ~ t 2 -
Gii(t) =8, [exp(— (Hj —Ept +fdt' Bu(t—t’
The spini quantum antiferromagnet ground state has i(O=oylexp—(Hy; ~Entl, 0o X [Cil(t=t)]7

been solved using Monte Carlo methods by several groups

[21,36,12. We will add nothing to their results, however, the y Hjj— EP* —Hyj(1-8y))

Hamiltonian is simple enough so that we can solve the Hjj—Er | -

imaginary-time equations easily. We will then relate this so- % (=Hmp) (1= 6m))

lution to the method using E@5). 5
Carlson[21] and otherg36] exploited the fact that the X[(Hjj—Ep)exp{— (H;;—Ept'}s. (30)

Hamiltonian can be written in terms of boson variables and
the basis set can be chosen, for a square lattice, so that thée have retained the labels of the terms to match those in
ground state is positive. The standard spin Hamiltonian is Eq. (25). The absence of term 4 means that step 3 in the
algorithm for Eq.(25) is omitted, i.e.| is set equal tq.
We may restate the algorithm as it applies to the
_ above equation and the problem at hand. Sample a time
H= _‘]% S5, (28) to hop, t’, from the normalized probability distribution
(Hjj—Epexd —(H;—Ept']. If t’>t, then the walker has
finished and remains at siteOtherwise, sample a boson hop
where the suméij ) are over nearest neighbor states &isl  from sitej to a sitek according to the relative value of the
the spin vector of the spig-particles at each site. This is importance function at the hopped position, i.e., saniple
transformed[21] to a boson system on a two-dimensional from the probability distribution function of term 5. The
lattice, walker at sitek is assigned a weight of term 6H(;
—EP)/(H;; —Ex). As mentioned before, the weight can be
kept or included in a branching/absorption process. Finally,
H=— ﬂ D (binj +b;rbi)+~]2 nin, . (29) subtractt’ from the time left for the walker to complete the
26 m time step, and repeat the process until the walk terminates.
This resulting algorithm can be related to that of Trivedi
and Ceperley36] with only minor modifications. They used
This Hamiltonian describes hard-core bosons on a squaige propagator of Eq5). As the system size becomes large,
lattice. The energy is the energy above the classical perfeg¢he largest eigenvalue also gets large. To keep the propagator
antiferromagnet ground state energy. Boson operdhérs positive, the “time step” in Eq.(5) must get small. In this
(b;) create(destroy a boson at sité. The bosons have a case, the straightforward algorithm to sample E5). be-
hard-core interaction because the number operaitgrgen- comes inefficient. The straightforward algorithm simply
erated by the transformation, only take on the values 0,1, i.esamples the move for a walker from state i by sampling
no .double occupancy. The- basis states are chosen to be thasgom the relative value ob;; — (ﬁij —Eq8;)At. As At be-
which have totalS, zero, since only these states are impor-comes small, almost all of the steps will be sampled from the
tant in the ground state of the antiferromagnet. This corregiagonal term. Trivedi and Ceperley therefore modified the
Sponds to a half filled lattice of bosons. Different fIIIIngS of a|g0rithm so that they Samp|ed the number of Steps until the
bosons correspond to differess . walker hops. If we take the limit of their time stefif—0,
We begin by Constructing the trial wave function and im- rep|ace the number of Steps by the Corresponding time

portance sampled matrices needed for the first of our Greengat, and propagate all the walkers to the same timee
function algorithms, Eq(25). Several choices are available recover our algorithm above.

that were used in earlier simulatiofi1,26,3 but for the One advantage of our formalism is that it is easy to see
algorithm discussion we need not make a specific choice of fow to expands in terms of another Green’s functid®(Y).
trial wave function. For example, solving the spihgquantum antiferromagnet for

The simplest choice fo6(") is to takeH") to be the high values ofS, corresponds to a low density of bosons. If
diagonal part of H. Then, H{”’=H;;5;, and G{”(t)  the bosons are well separatedG4” given by solving for
=exf —(H;; —Eq)t]g; . Since the true ground state energy isthe propagation of each boson in a domain around its current
known to be negative, anid;; is positive, therGi(jU)(t) isa position would be more efficient. The method would then be
decaying exponential and can be normalized and used asvery much similar to that given in Sec. V for the many-
probability distribution in time(For other fillings, where the particle Schrdinger equation. The simple diagor@{) can,
exponential may not be negative, a time could be sampledf course, be viewed as a domain Green’s functiee Sec.
from a decaying exponential and appropriate weighting facV/) with the domain consisting of a single site. Extending the
tors included. domain of G!Y) should yield a more computationally effi-

SinceG) is diagonal we can simplify Eq25) and the  cient simulation.
algorithm for implementing it. A diagonat ) meansH "
=H{" andG{”’=G{. This makes term 4 and term 2 in
Eqg. (25 simply §;;. We can rewrite Eq(25) with these Scalar field theories can be solved using these GFMC
simplifications as methods. Here we show how the method developed by Carl-

IV. A SIMPLE FIELD THEORY
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son and used by Carlson and Schnji2i2] to solve the po- The algorithm described by Eq27) requires the local
laron and other scalar field theories can be cast in the exaghergy, Eq(26), E}"Ca':EmHmj. The index now refers to a

imaginary-time GFMC form. The method is quite similar 10 particular basis state which we denoted abovékay and

that used for the lattice Hamiltonian. The main difference isihe sum is over all other basis states of the same total mo-
that the degrees of freedom are continuous. We will present gyentum. We can Separﬁ#ocal into three parts:

lattice formulation in momentum space. The continuous for-

mulation[22] is obtained in the usual way by replacing the dia

sums over momenta by integrals. Ef0=w(ke) + X wp(ki),
The Hamiltonian for the scalar field theory is '

> (P(Kps )| B(@bl(@a(k—g)ak)| w(K,))

H=2 wr(k)a(kak)+ 2 op(kb'(Kb(K)=X B(A) e d
‘ ‘ " ‘ (Wr(Ko)[Wr(Ky) |
x[a'(k—da(k)b(@)+a’(kak—ab@], (31
I _ _ _ 2 (W+(Ky-p)|B@b(@a’(k+dak)| r(K,))
wherea(k) [a'(k)] is the fermion destructiotcreation op- pdest '
erator andb(k) [bf(k)] is the boson destructiofcreation ) (W(Kp) | ¥1(Kp))
operator for momentunk. The corresponding free particle (39

energies are;(k) andwy(k) and the interaction, which can
create or destroy bosons of moment@n has a strength
given byB(q). This interaction term corresponds to the hop-

ping term in the lattice model, and to the kinetic energy N reation energy termES® requires the suntintegra) over

the real-space Schdinger Hamiltonian. Carlson and . ,
S i . all possible values of the created boson’'s momentum. The
Schmidt discuss several different forms for the free particle

spectrumsp(k) and w,(k), and the interactiogg(q) with matrix element conserves momentum, so the vektor,
applications to a polaron model and a model with a nucleod!@s the same boson momenta of theoson state and one
and scalar mesons. We will leave the particular choices ofdditional boson of momentum which is subtracted from

these quantities unspecified and refer the interested reader {3 férmion momentum. When gna}king amove to a state with
the original work[22] for specific results. one fewer boson, the sum B covers the momentum

. AN - - : . values of then possible destroyed bosondlote that both
A basis statdKp)=|ki.kz, ... ko k) will specify Ehe destruction and creation energies are negativbis can be
number of bosonsy, and the momenta of each bosdn,  generalized to include more than one fermj@al.
and the fermionk;. Carlson and Schmidt chose the trial  We will now construct the propagation equation based on
wave function for one fermion and total moment@no be  our second algorithm, Eq27), and show that it is a fixed
time-step version of the algorithm use in REE2]. The par-
R ) ) ticular choice forH"Y), Eq. (34), meansGY) is diagonal in
W)=P(Q)X g(kf)aT(kf)exp{Z f(k)bT(k)}|O>, the basis set chosen. Substitutiég” = 5,;G{” allows the
ke k 32 simplification, which we need, of E¢27),

The first component oE'°@ is the energy of the diagonal
HamiltonianH) for the particular walker and is simply the
sum over boson and fermion single particle energies. The

. N Gij()=[exp( — (B~ Ent) 1o 8 1L G (1)
whereP(Q) projects the state onto total moment@n They N J St
describe the variational Monte Carlo procedure used to opti- local t =~ ,
mize a trial wave function using standard methods to sample X expl(Ej —Ept ]+ OEK [Gik(t=t")]s
the density el

X [exp{— (E{“—Eq)t'}];

n

|‘I’T(}Zn)|2292(kf)i1:[1 2(k)/n!. (33) I H(ijJ)(t/)_i:'kj

X
; (HE() —Hp)p

To match the algorithm described in REZ2], we use our
second algorithm described by EQ7). H(Y) must first be o,
chosen. The simplest choice, following Carlson, is similar to w| — 21Vt exd (E°— E-)t' TN dt!
the simplest lattice choice. We také"Y) to be diagonal irk t’{ i (1)ex (E; DUl
space and boson number,

6

4

(36)

H(U):Z wf(k)aT(IZ)a(lZ)vLZ wb(k)bT(IZ)b(lZ). We have retained the structure of the propagation equation,
k

K Eg. (12), and the labeling of each of the terms, so that we can
(39 refer to the steps in the general sampling procedure. Term 5
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equaleds;; and was removed with the sum oveiWe have have, in a practical sense, the same effect as making the time
dropped the unnecessary tilde from the diagdtgd. steps in the exact-time algorithm equal to the large time in-

Implementing the walk proceeds as before. For a walkeferval-
at an initial locationj, we evaluate the three components of

local H : .
Ej using Eq.(3U5). We must sample a time fro_m term 4 V. THE MANY-BODY SCHRO DINGER EQUATION
above. Because{}”’ contains the diagonal energ'*?, the _ _ o _ .
timet’ iS S|mp|y Samp|ed from the norma”zed exponentiaL In th|s section we W|” d|SCUSS In some deta” the exact

imaginary-time method for a system Wfequal mass bosons

exq(EijeaJr E?esst] in thre.e-dimensional space interacting with central pairwise

—(Eoear £ (37)  potentials. We are adopting units whe#é/2m and # are

j i unity. We shall ultimately apply this method to the ground

If the time sampled is greater than the specified time step state of liquid helium, bu'; ger_1era|iz_ation fo unequal masses
no “scattering” has occurred, so set=t and sample the gnd more g.ener:_':ll potent|als.|s straight forward. Generaliza-
first term which means stay in the same place and complettéon to fermions is probl_emapb?]. e
the walk by assigning a weight equal to term 3t'lfis less The many-body Hamiltonian we are considering is simply
thant, then sample a new locatida from the normalized
distribution of term 6. The new “locationk means a state H=-V?+V(R), (39
with either one more or one less boson since the numerator
of term 6 contains only the off diagonal part of the Hamil-
tonian and it connects only states with a different number ofy 4 icjes with positions; and V2 is the sum of laplacians
bosons. We caa priori decide whether to create or destroy with respect to the individual particle coordinatésviz.

a boson by selecting the option with the relative weight of While real-space GFMC is applicable to a wide class of

the two corresponding contributions in term 6. Then, either roblems, it carries with it a few technical aspects that did

;ﬁﬁfg or a destruction move must be made with the pro not arise in the theoretical formulations of the lattice and

field theory problems of Secs. Ill and IV. In particular, we
must deal with infinitely repulsive potentials and additional

pj(t)=

Fv\\jhereR=(r*1,r*2, ..., fn) is the N dimensional vector of

crea
?rea:EJ'—, sampling approximations that are related to issues of effi-
‘ B+ E}’est ciency but which retain the exact character of the method.
We will not discuss the issues of the attractive coulomb po-
g ?93‘ tential or nodal surfaces of wave functions because the usual
P ESEWt. (38)  methods that have been appligdt,37 can be carried over
i i

directly to the exact imaginary-time formulation.

If a destruction move is chosen, then one of theosons
is deleted and its momentum transferred to the fermion. The A. Coordinate space algorithm

selection of the boson is done with a probability proportional In Sec. Il A, Eq.(11), we showed that the KLV Green’s

to the matrix elemenH(}(t')~H,;. Alternatively, this is  fynction for the time-independent Scbiinger equation was
equal to sampling one of theterms inE{**'given in the sum  formally related to the time integral of the imaginary-time
in Eq. (35) with a probability equal to the value of the term propagator. Although not explicitly formulated this way, the
divided by E?e“. If a creation move is selected, exactly the KLV algorithm can be understood as sampling a time step
same procedure is followed of sampling a term from the sunfrom the exponential probability distribution function of Eq.
in E{"*in Eq. (35 except that now there are an infinite (11),
number of such possible final states. There are a number of
techniques available for sampling from such a distribution
[30]. Finally, the new locatiork has been selected and it is
assigned a weight ekp (E’°®~Ey)] and the walk contin-

ues with a new timeé—t’ as before. __to select the time step for the Monte Carlo move. Thus, our
The algorithm implemented by Carlson and Schmidt dif- g gification merely changes the randomly chosen time step

fers from ours in that they always moved the walker at eachy, 4 prescribed time step. We proceed by following the basic

step. They accomplish this by sampling the time until ajgeas of the Kalos, Levesque, Verlet algorith#] and note

creation/destruction move is made using the probability disyhere differences exist.

tribution of term 4, i.e., Eq(37). This, in our language, ef- The imaginary-time Green’s function, E€@), in a real-

fectively setst=, so term 2 is never sampled. We use thegpace basis, is the solution to thél Zoupled differential
term “effectively” because this is not a rigorous analogy. In equations

their implementation, the simulation was divided into several

large time intervals and when a walker had passed one of the JGRR 1)
interval boundaries, its propagation was suspended until all _v2y _ Py A

other walkers had passed the same boundary. These intervals [=VAHV(RIZEAGRRLY at - 4D

1
— A t/At
p(t)= e, (40)
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We will employ our first algorithm, Eq(25) of Sec. Il B, to t
express this exact Green's function as a known Green's func-G(R,R’,t)=G)(R,R’,t) + J dt'f dR'G(R,R",t—t’)
tion plus a correction term. 0 b

The simplest approach takes a Hamiltonta®”) with a X[U-V(R")]GY(R",R" t")
constant potentiall if the constant potential can be chosen
to be an upper bound fo¥(R). In helium and many other
systems,V(R) is often not bounded above. To circumvent
this problem, as well as to make the method more efficient in

t
+f dt’f dS'G(R,R",t—t")
0 D

the general case, the domain l8fY) is restricted. Equiva- x[—A"-V'"GY(R" R t')]. (46)

lently, outside a finite domaib the potential irH("Y) is taken

to be infinite. The last term on the right-hand side is integrated over
The Green's function for a constant potentidlin the  the pounding surfacegD, of the domain of G and

domainD is the second term is integrated over the domain. The term

[—A"-V"GUY(R",R’,t")] is minus the normal derivative at
G(U)(R,Rr,t):<R|ef(H(“)*ET)t|R'>, R,R'eD, (42 the surface. This new surface term is a feature that can be
naturally fit into the diffusion interpretation of the simula-
tion.

Both the boundU and the domairD are chosen differ-
ently for each value oR’. The only restriction on the do-
(HV—E)GY(R,R 1)=(-V2+U—-E7)GY(R,R 1) mains is that it must eventually be possible to propagate

from any valid part of configuration space to any other. The

and satisfies

_ IGYRRD (43  Vvalue of U(R) is selected to be an upper bound\¢R")
ot ' for R” inside the domain so that all terms in E@6) are
positive.
with the conditionGY) =0 for Ror R’ outside the domai® Having constructed the_ coordinate space integral equation
andG)(R,R’,0)= 5(R—R"). for G(R,R’,t), we can write down the importance sampled

Becauses(") is defined on a finite domain, the derivation Coordinate space equation frand the integral equation to
of the real-space propagator equation, equivalent tqy, be iterated to obtain the importance sampled dengity
is modified by the addition of a surface term. We begin with= i corresponding to Eq$18) and(19) in Sec. Il C. Fol-

Eq. (13), in coordinate space, lowing the definitions of Eq(17), Eq. (46) becomes
Rle " EDYR")=G(R,R’,t ~ R R
(Rle IR7y=G( ) G(R,R’,t)EwG(R,R’,t)z wew)(R,R',t)
J (R (R

t
=G<U>(R,R’,t)—f dR’J’ dt’—
o Jo A t (R
+f dF(’f dt'———G(R,R",t—t")
X[G(R,R",t—t")GUY(R" R’ ,t")]. D o Y(R")

(44 -
x[u—V(R")]&FJGM(R”,R'J')
Carrying out the time derivatives to gdtandH") as in Eq. Yr(R)
(14), yields t R
+JdR”f dt'iﬁ)e(R,R",t—t')
t S o Yr(R")
G(R,R',t)=G(U>(R,R',t)+f dt’f dR'G(R,R",t—t") (R )
0 D % T , [—ﬁ"'V"G(U)(R”,R’,t’)] (47)
XHW(RNGY(R" R’ 1) #r(R)
-GY(R",R"t")H(R)G(R,R"t—t"), and
(45)

PR t+AL :f dR'G(R,R", A)(R',t). (48
where the argumerR” for H(R") and HY)(R") identifies W ) ( YR 49

the coordinates fof? andV(R").

Applying Green’s theorem t6V2G(Y) — G(VIV2G yields Unlike our general case, E418), Eq. (47) with impor-
the fundamental equation of the coordinate space algorithmance sampling cannot be transcribed from the original form,
giving the Green'’s functio, in a form that can be iterated, Eq. (46), by simply placing tildes over each function. The
as gradient at the surface prevents this elegance.
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B. Ideal sampling in coordinate space These sampling procedures do not include the importance
function or theU —V(R") factor, so we will modify the sam-
9Iing procedures in an approximate fashion and construct the
propriate weighting factors to make the algorithm exact.

Sampling the Green’s function equation, Ed7), pro-
ceeds along the lines described for the lattice and field theor
examples. The task is more complicated because of the suP
face term and becauseV)(R,R’,t) is not diagonal in the R
coordinate space basis. As a consequence, the sampling of 1. Constructing G (t)
both the time and positions from the importance sampled Before we can develop a sampling procedure for the vari-
functions will have to be done in a nonoptimal fashion. Ourous terms in Eq(47), it is necessary to construct the domain
substitute procedure will remain exact because the samplingreen’s functiorG("Y). KLV arrived at the time-independent
will include compensating weighting factors. Further, weform by first solving for the time depende6t“) which we
will argue that the increase in variance will be relatively seek. A hyperspherical domain in 3N dimensions was used
small and acceptable. The main source of variance will by Kalos in his early investigatiorfd,38| of few-body prob-
the approximate nature of the trial wave function. lems. An improved Green’s function, suited to many-body

As before, we will develop a procedure for sampling systems, was developed by Kalos, Levesque, and i@]et
which introduces as little variance as possible and thus is a@phe domainD is a set of nonoverlapping spheres, centered
near zero variance as possible when the importance functiofibout each particle. The radius of each sphere and the upper
approaches the exact ground state. It is thus useful to writoundU are adjusted at every step of the walk. As long as
down this ideal case and integrate H¢7) assumingyr  the bound is rigorous and the spheres nonoverlapping, any

=)5. Then choice for domain size and is legal, but very large domains
usually result in large values of the boutdwhich limits the
f dRGR,R’,t)=1 (49) distance walkers move in a single step. The optimization of
Y these is easily done by trial and error, so we will omit further
. _ . discussion.
on the' left suje of Eq(47) a_md |r_1$|de both integrals of the Since the spheres in the domanare nonoverlapping,
right side. This leaves the identity, G can be factored into a product Nfone-body functions,
1=f dRGY(R,R', 1) GUW(RR';t)=(Rlexd — (HY—Et]|R’)
N 4 =/
1 [|F—=rF] t
t R// _ _ _ - o
_’_j dt’ f dR"[U_V(R”)]lpT( )G(U)(R”,R,,t,) exq (U ET)t)I];[l a3g a; ’a-z .
0 D Pr(R") ' '
(51
Pr(R") R
! —_ar. vV pr Rt/
+Lde ¢T(R')[ VIETRLRLOD. G0 1he sphere radius for thi¢h particle isa; , andf; andr; are

the three-dimensional positions of partidleThe analytic
From the above equation, we can read off the procedure ttorms of theg(p,t) are well known from classical diffusion
be used for exact importance sampling, in analogy to Eqgtheory. They describe the time evolution from a unit point
(22). The term in large brackets is a normalized probabilitysource at the center of a unit sphere with a unit diffusion
distribution in thet’ variable. As beforée.g., Sec. Il C lwe  constant, as it diffuses toward the perfectly absorbing bound-
would samplet’ from this distribution and it’ >t then the  ary of the surface of the sphere. The funct@ms defined by

GWU(R,R’,t) term is to be sampled for a new locatigof ~ the above equation, satisfies
the walker and the walk terminates.tlf<t, then we must
choose a time sampled from the distribution of times for
moves to the surface and the distribution of times for interior
(volume moves with a probability proportional to the two
integrals oveR". Finally, having selected the surface or vol- with the boundary conditiong(p,t—0)=&%(5) and g(p
ume time, the locatioR” is to be sampled from the corre- —1t)=0. The time-independei®(", of KLV is defined, in
sponding integrand scaled by its normalization. TRISis  apalogy withGy,\ in Eq. (11), as the integral over time with
assigned a new time-t’ to complete the time step and the the constanE. to make the eigenvalue spectrum positive,
sampling ofG(R,R",t—t’) is done to continue the walk. ie.,

The above description is ideal and, with a realistic impor-
tance function, we must carry out these steps in a way that " N IF—F!| t
includes weights. There will be some additional population Gf(UL)V(R1R,): dte*(‘”Ec)‘H _3g< — ,_2)_
fluctuation resulting from the fact that we include weights 0 i=1 a a; q;
that are not unity. Our first step in implementing a nonideal (53
algorithm is constructing the domain Green’s functi®f).
We can then sample a time from this function and the posiit should be noted that the second argument in g is really
tions R” on either the interior or the surface of the domain.#t/2m;a?, wherem; is the mass of particlg but we have

ag9(p,t)
ot

~Via(p.t)=— (0<p<1) (52
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assumed: =1 and%?/2m=1 with all the masses the same. is just the negative of the density change in the domain. With
A change of the scaling factor is the only change necessamhese results, the normalizations®f”) and—n-VG(\) are

for unequal mass particles. known and each of these distributions can be sampled once
The functiong(p,t) is easily calculated from the eigen- the timet is chosen.
function expansion of Eq52) to be All of the sampling techniques we have described in this

section are essentially a restatement of the constructions em-

ployed by KLV. Their method of choosing the time sampled

it from the exponential in Eq53). Our formulation, thus far,

has been toward implementing our first algorithm as embod-
1 p? 1 ied in Eg. (25 and its coordinate space manifestation, Eq.

= WGXF{ - E) + T nZl (p+2n) (47). That algorithm requires that we sample a time from

- 02,6 (t")/at". The sum over final states in this expres-

|
(p+2n)2 (p—2n)? sion includes both diffusion that terminates inside the
xXexpg ————|—(p—2n)exg — ———|.

1 ee]
g(p,t)==— > nsin(nmp)exp — m2nt)
2P n=1

©

4t At spheres and diffusion to the surface. We will consider both
processes in the following section.
(54)
The second equality is the result of using the Poisson sum- 2. Sampling the domain Green's function ¢
mation formula on the eigenfunction expansion. The result of  The time derivative of the domain Green's function is a
the Poisson formula can be recognized as the contributiongyohanility density in the two variableR andt, since it is
for a unit source at the center of the sphere and a set of imaggysitive definite and normalized,
sources outside the sphere. Only five terms of the series are
required to obtain convergence machine precision on 64-bit
computers for small tt<0.11) using the second form and z o
for larget (t>0.11) using the first. fo dt fDdR
The integral overd®p of g(p,t) is necessary to sample
new positions fronG(Y). To machine precision, again only a

d
- EG<U>(R,R',t') =1. (58)

few terms are needed, This follows from the conditions tha") is S(R—R’) at
t’=0, and zero at’ =«. Having constructe@Y) analyti-
h(t)= fldg (p.) cally in the preceding section, we wish to samplendt
, L rele from the probability distribution function, in the form we
. need it. Since it is a joint probability distribution function in
N _ two variables, we can write it as the product of a marginal
_221 (—1)"exp(—7nt), t>0.16 probability distribution function fot and the condition prob-
= ability distribution function forR givent,
2 2 .
-2 D ex;{—w) t<0.16
Vot 4 a0 ;
- —GU(RRt
(55) P P )
- —;G<”><R,R',t’>= y
The surface term-nA-VG'Y/(R,R’,t), is calculated using f U
dR— —GU(R,R',t
Eq.(51) as D o’ ( )
No—1 t d
—A-VGU(R,Rt)|,p= (U EDY — 09|15 xf dR - —GUY(R,R' t")].
=1 a a D ot’
N LA (59
i af’g a af)’

The rightmost factor in this equation is the marginal prob-
Sinceg is spherically symmetric, the normal derivative is a ability distribution function, the probability of sampling a

constant. Its normalization is time t independent of the value d® sampled. The condi-
tional probability distribution function in brackets is the
d h(t) 3 ag(p,t) 3 ) probability that anR is sampled, given thatwas sampled.
_T:f Tt :f d°p[ = V,9(p.0)] We can transform the probability distribution function

into a form that can be used for our purposes bec&@f&e
= —4ﬂﬁ.ﬁpg(p,t)|p=l_ (57) satisfies the Schdinger equation, Eq43). If we integrate
both sides of Eq(43) over the domairD and over the time
This is just a consequence of current conservation in thelomain, we find that the unit normalization can be expressed
analogous diffusion problem. The flux through the boundaryas three terms:
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1=f dR GY(R,R',1) P(t')=—

N
d t’ -,
— hl —|e Y. (62
o Ll
t

’ U _ W) p" 't ~ . i
+ fo dt fDdW(U Er)GH(RRL) The constant is U—Ey, but later we will want to gener-
alize the procedure so we will treat it as a an arbitrary posi-
tive constant. Equatio62) can be sampled by taking the
minimum of the times sampled from eaehdh(t’/aiz)/dt’

and Uexp(~Ut'). (This is an example of a combinatorial
sampling method discussed in RE30].) The former can be

— . The last two terms are the integral uptidhe last two sampled by direct application of the transformation method

terms are obtain by substituting(")— E; for the time de- [30],
;\r/;'flve, then transforming the Laplacian to a surface inte ti=ai2h’1(§i), 63)
There is a one-to-one correspondence between the ter
in Eq. (60) and the normalization condition for the case ofn%d the latter from
ideal sampling given by Eq50). As we will show below, we In(&,)
can sample all the terms in E@O). Then we will use this as to=— 2 (64)
a step towards our ultimate goal of sampling the terms in the U
full Green’s function equation, Eq47), when a nonideal
importance function is used. We will use the correspondencehereé, throughéy areN+ 1 independent random numbers
between Egs(60) and (50) to construct the approximate on the interval (0,1).
probability distribution functions that we sample, and then By taking the smallest time of the+1 values sampled
modify them by the appropriate corrective weights. above, we have sampled a time from the probability distri-
The first term in Eq.(60) equals the probability that’, bution function of Eq(61). Because we know which was
sampled from the marginal probability distribution function, the smallest, we also know the term in E§1) from which
will be greater thart. The second and third terms are thet’ was sampled. The probability that thée sampled from
integrals of the joint probability distribution function ovBr ~ —dh(t’/a?)/dt’ is the smallest is the probability of sam-
(including S) and up to time and have the value equal to the pling t betweent andt+dt times the probability of all the
probability of sampling a time’ less thart. othert’s being larger, which is
From this equation, we can see that if we want to sample
the marginal probability distribution function iri over the d t’ t’ -
interval 0<t’ <o, then we may sample from - h(—z) d'[] h<_2) e V.
dt a; i#i\ &

t =
+f dt’fdR”[—ﬁ”-V”G(U)(R”,R’,t’)]. (60
0 S

The first term on the right is the integral from=t to t’

(65

Equation (65 is the normalization of the
—1-V/GW(R",R;t') term if U=U —Ey. Similarly, if the
t' sampled fromU e Ut is the smallest, the probability is

f dR'(U-EpGY(R", R t")
D

_}_f dRu[_ﬁ//_V’HG(U)(RH'R/’t/)]' (61)
S

!

~ o~ t
Ue Yat' ][] h(—z
i ai

: (66)

and this is the marginal probability distribution function in
Eq. (59).

In our algorithm, if the time sampled is less thirthen
we need to sample the conditional probability distribution .
function in Eq.(59) for a positionR. The marginal probabil- sampled aﬂow§ /us to sample the new positih If the
ity distribution function fort’ in Eq. (61) is the sum of two t' from Ue Y is smallest, sample anR" from
distributions. 1ft' is sampled from the first, theR is G (R',R’,t")/[dR'GY(R",R’,t"). This latter sampling
sampled from the interior point ob and the conditional iS simply done by sampling @ for each particle from
probability distribution function for that distribution is the 9(p.t'/a)/h(t’/af) and letting |F;—F/|=a;p. Sampling
integrand of the first term. I’ is sampled from the second from the surface term is very similar. If the smalléstwas
distribution, then likewise a point on the surface is to besampled from—dh(t’/aiz)/dt’, then to sample the surface
sampled from the integrand. derivative of G(Y), the position of theth particle must be

Having outlined the steps needed to samp@dR from  sampled at the surface of its sphere, and the other particles
Eq. (59) we can now specify the particulars needed to samplesampled as before. Since the normal derivativg(gf,t’) is
each of the terms in E(60). Our first step is to sample a independent of position on the surface, this can be easily
time from the distribution in Eq(61). This can be done by accomplished by sampling values as above and simply
sampling a tima’ from the probability density promoting particlei randomly to the surface of its sphere.

which is the normalization ol G(Y)(R",R’,t").
Knowing t’ and knowing the term from which it was
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Routines to samplep from g(p,t)d®p and t from . (R R
—d h(t)/dt are available in the literatufeg9]. Wy(R,R")= Ur(R) 1_,[ [1+min(|Viln ¢(R)|

The above procedure sampled time and position from Eg.
(61). To complete the desired sampling of E60), we need X |Fl —Fi|,1)cos6;] L. (69
only to check if the smallest time sampled was greater than
the time stept. If so, then sett’=t and sample the new The choice ofU, Ec, and thea;’s should be done to
location from the interior of the domain as described abovemaximize approximately the average tirtieper step. Typi-
That location has then been sampled from the integrand dfally, there is a large range of values that give similar results.

the first term of Eq(60) and we have sample@(). The complete algorithm for al8 dimensional code is the
following.
C. Importance sampling the full Green’s function (1) Select a walkeR; from the previous time step. The
in coordinate space iteration of the equation is complete when no previous walk-

) o ers remain. Calculate it8),V(R;), the a;'s, and the trial
The above section presents a way of sampling time ang,,ye function value and gradient.

jv?‘rr;ﬁ"Eispﬁlseitig;];efoéo‘?naF?trfObaEgiLi;yagSg,PUtg) narfgnr\s}ion (2) Sample the smallest’ from the N surface terms
&Y € 1122 ’ T ™ . ™

e S, as the terms in the full Green’s function equation, Eq._dh(t /a; )/d,t and ’from Uexp(-Ut) with U=[U
(47). Our analysis of the ideal case told us that the sampling V(R)]. If t >t_’ sett :E' . L2

of position and time should be done from H&0), even if (3 Sample distances,— | =pan from g(p.t'/ag)
the importance function is not exact. Since exact sampling ofVith t' the smallest from step 2.

Eq. (50) is not possible, we must introduce weights. We (4) If asurfa}ce E|meeof particlé is t'he smallestand less
could proceed by simply taking the three terms of E@&f)  thant) make its|ry—r\|=ay, then (i) sample the set of
and multiplying and dividing each term in the full Green's angles 6; from right-hand side of Eq(68), and calculate
function equation, but that defeats the whole effect of imporWweight W, and (i) sett=t—t’, assign the weighv,, to
tance sampling. Instead, we modify the sampling proceduré"e walker, and continue the walk step 1.

for G\Y) to make it more closely resemb®", and then (5) If the volume time sampled fronUexp(-Ut) is
multiply and divide corresponding terms of the full Green’sthe smallest(but less thart), then assign angles as above
function equation. and calculate the  weight W=[U-V(R/)]/[U
Sett=t—t’, assign the walker the weigh and restart the
U=[U-V(R")]. (67) walk at step 1.

If the volume time sampled is greater thiahen set it to

. . . : ~ t and sample the angles as above and calculate the weight,
This choice is not unique. Whatever change is madé to —W,exp(E—V(R)]t). Move the walker tcR; , assign

must be compensated for with appropriate factors included i : .
the weight terms to correct for this difference. This changet € Walker_ the weightV and the Wa‘I‘k te_rmlna"fes.
The weight factors above were “assigned” to the walker.

tends to increase the number of volume steps selected whi(m the most common implementations of GEMC, this means

corresponds to picking the first term in Ed.7). ) . N
The inclusion of some effect of the importance function,f[hat when a walker is selected from the previous generation it

, =) o i is assigned a weight of unity. All subsequent assignments
$r(R)/Yr(R), in G, 1S done by using its gradient to se-  itiply this weight. If the walk does not terminate, Huis
lect the direction of{ —f;. This is accomplished by expand- aset 1ot —t’, the walker retains its weight when it reinitiates
Ing the walk for the remainder of the time step and the weight
R) continues to be assigned. In the final step above, when the
Yr(R = L, walk terminates, one takes the integer part of the weight plus
Jr(R) %H (1+[Viin ¢(R)||F} —Filcost) a random numbekV+ ¢, and if this is greater than one, one
replicates the walker and that number of new walkers begins
the next time step. If the integer is zero, then the walker is
eliminated from the population in the next time step.
The process is repeated for as many time steps as required
(68) for the simulation to converge and enough statistics to be
calculated to accurately determine the desired averages.

~[I (1+min(|VIn ¢(R)||F/ =7i|,1)cos6,),

where 6, is the angle between the gradient afid-r;. The

min fun_ct|on constrains the expression to b(_e positive deﬂth/L APPLICATION TO THE EFFECTIVE MASS PROBLEM

so that is can be used as a probability density. The right-hand

side of Eq.(68) can be recognized as a sum of a uniform and An advantage to using the imaginary-time formalism is
linear distribution in co® since the solid angle element is that it allows one to calculate imaginary-time correlation
d cosfd¢. The ¢ is sampled uniformly. After sampling from functions directly. A straightforward application would be to
Eq. (68 we must, as usual, include an additional correctioncalculate the effective mass of impurity atofssich as &He
factor in the weight for the walker which is simply atom in liquid “He. Here we will apply the method to a
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distinguishable*He atom in liquid*He.

The effective mass of the impurity is given by calculating 18 - 1
the diffusion constant of the impurity in the imaginary-time 16 - g
simulation. This is easily understood by looking at the two-
time density-density distribution function of the impurity. If
we were looking at a free particle, this distribution function &
is simply the three-dimensional Gaussian Green'’s function,™
with width o= (%%t/m)*¥2, so that its diffusion constant is 08 .
#2/m. The impurity’s density-density distribution function is 06 L 4
not in general a Gaussian. However, at long times, the posi g
tions of the background liquidHe atoms become uncorre-
lated, and the distance the impurity moves in a timeéll be 02 .
given by a sum of uncorrelated random variates. So for times 0 ' ' : ' ' ' ' ' '
much longer than this correlation time, the distribution of 0 002 004006 008 01 012 014 016 013 02
positions will again be Gaussian. The width of the Gaussian, t (K1)
o= (%°t/m*)Y? defines the effective mass.

The standard method to define the effective mass of ag_
impurity atom is to look at the long wavelength limit IS

04 4

FIG. 1. Mean square diffusion distance vs imaginary time for a
tinguishable mass-four helium atom. Short time slope indicate
bare mass and long time slope indicates effective mass.

1 Iiml JE(p) (70 of the usual GFMC time-independent algorithm. We ob-
m* p_oP P ' served no differences in the convergence of the two methods
either in CPU time or in variance.

whereE(p) is the energy of the system with the single par- An equilibrated population of 1000 walkers was the start-
ticle excitation, corresponding to the impurity, having mo-ing point of the calculation of the imaginary-time diffusion
mentum p. constant. Each walker carried a unique tag, so that if a
This is equivalent to our diffusion constant expression.Pranching process occurred, progeny would be given a new
One way to verify this is to imagine a direct calculation of Unique tag and would retained the tag of the parent walker.
E(p) using Green's function Monte Carlo. We add to the The calculation was carried out so that after each time step,
Hamiltonian an external potential that is zero when impuritythe entire population with identification information was
hasz coordinate 6<z<L, and is positive infinity otherwise. Stored. With the identification information, the parent walk-
We assume that the system without the external potential i§'S could be traced back through every step of the simula-
solved using Green’s function Monte Carlo. For conve-tion. Each atom in each walker was thus distinguishable. For
nience, we also assume that the time siéfor the Green’s any atom at a time, the quantity|F(t)—r(0)| could be
function Monte Carlo calculation is small. In that case, thecalculated.
simulation with the external potential could done as in an _Figure 1 shows the average value of the mean square
exact imaginary-time formulation for a single particle. At the displacement calculated versus imaginary time. As expected
end of a step we simply ask if the impurity has left the from our discussion above, the initial slope reflects the bare
interval 0<z<L. If so the walker is removed. If not, the Mass of the helium atom and is 1.0 based on a simply ob-
walker is given a slightly larger weight el(p)At]. E(p), serving Fhat them* =1 line in Fig. 1 matghes the slope near
the growth estimate for the excitation energy, is chosen tdhe origin. The linear asymptotic form is achieved quickly,
keep the average number of walkers constant. The dynami@ter no less than 0.1/K in imaginary time. In spatial terms,
for large L is identical to that for a single particle. If the this is about 1 A, or about the average inter-particle spacing.
energy of this system is calculated using Green’s functiorlt i Somewhat unexpected, that in less than 1 A, the particle
Monte Carlo, the energy of the excitation will be set by thewhich moves in imaginary time are essentially uncorrelated

time it takes the impurity to diffuse between the two limits With the original position. Fitting this form over the last half
of the graph yields a slope ah* =1.60+.01m, for an ef-

fective mass four impurity.

We calculate the diffusion of a mass-four distinguishable
The time-step algorithm of Sec. V was carried out for aatom with interactions identical to all other helium atoms
system of 64*He atoms interacting through the HFDHE2 because the process of exchange in a real helium fluid causes
two-body potential given by Azi#40]. GFMC calculations the effective mass to lose physical significance. The defini-
with this potential have been shown to produce the groundion in terms of the excitation spectrum fails because there
state properties of liquid and solid helium accuratgd]. are no excitations with the quadratic form required in Eq.
Periodic boundary conditions were employed. The impor{70). Alternatively, one can understand this in terms of the
tance function included two- and three-body correlationfact that the simulation, as we have described it, does not
terms[42]. include the symmetry requirement that the ground state be

The algorithm was initially used to calculate the equilib- symmetric under exchange of particle coordinates. The bo-
rium ground state energy by carrying out 1000 time steps oon ground state simulation remains exact without the sym-
size 0.001/K. The calculation required a simple modificationmetry requirement as long as we calculate expectation values

A. Numerical results
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averaged over all possibN! exchanges of particle coordi- simple field theories. We have demonstrated that in these
nates. Expectation values relating correlations of quantitieslasses of problems there is no increased computational or
at different imaginary times must also average over all exalgorithmic complexity; indeed, simple alterations to existing
changes to be correct. Such an average would yield an infeomputer codes are all that is required in each of the ex-
nite diffusion constant consistent with the zero effectiveamples. Our calculation of the pseudoeffective mass of a
mass calculated from E70). helium added to liquid helium was included as a tangible
GFMC imaginary-time methods can be applied to obtainexample of the implementation of the coordinate space form
other dynamical physical properties with appropriate use ofvhere we could calculate all of the usual ground state prop-
transforms implemented with, for instance, maximum en-erties and extend this to an imaginary-time quantity previ-
tropy techniqueg8,9,43,44,12 Another application is the ously inaccessible to time-independent and pseudotime algo-
determination of the effective mass of truly distinguishablerithms. We have observed that popular implementations of
impurity atoms such asHe [45]. Such calculations require imaginary-time propagator algorithms are approximate and
significantly more computational time. A few hours of time require significant additional programming and tests for
on a 100 MFlop computer is sufficient to produce the resultgime-step errors. An algorithm with fewer heuristic modifi-
in Fig. 1. This is due to the fact that all helium atoms couldcations and a guaranteed time-step independence is offered
be tracked in the diffusion process, not just one atom of as a replacement.
walker.
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